Tag: data preparation

Analytics
Joon-Hyung Koh 0
누구나 손쉽게 사용 가능한 AI 기반의 시각화 분석

시각화 분석을 위해서는 빅데이터를 활용할 수 있어야 하며, 시각화 및 고급 분석, 셀프 서비스, 리포팅 기능을 갖춰야 합니다. 아울러 데이터 핸들링, 분석, 리포트 생성에 이르는 전 과정에서 인사이트를 확보하고자 하는 모든 이들이 자유롭게 사용할 수 있어야 합니다. SAS AI 기반의 시각화 솔루션은 완전 초보자도 자동 추천과 자동 예측 기능을 사용하여

Advanced Analytics | Artificial Intelligence | Internet of Things
Christian Goßler 0
Bolschewistische Rotationsbeschleunigung im Internet of Tumble (IoT8)

„Für mich heißt Internet of Things, dass hier alles rotiert wie in einem Wäschetümmler und es weder Durcheinander noch Stillstand gibt.“ Frau Dönmek hatte Lenin und mich am Werkstor in Cedorf abgeholt und uns gleich in die Halle zu ihrer Anlage geführt: „Wir arbeiten an der Kapazitätsgrenze. Was wir wegen

Analytics | Data Management
Michael Herrmann 0
Data Preparation: Qualität per Self-service bei Banken

Finanzdienstleister haben aktuell massive Herausforderungen beim Management ihrer Daten: Der Kostendruck zwingt einerseits zu einem hocheffizienten Betrieb („run“). Zugleich wandeln sich andererseits die Prozesse im Business, Stichwort Digitalisierung („change“). Die drückenden Regeln der Aufsicht scheinen sich nicht vereinen zu lassen mit dem Anspruch der Kunden, flexibel, fix und doch datensparsam

Data Management
Rainer Sternecker 0
Datenmanagement – eine lästige Pflicht? Schon lange nicht mehr!

Datenmanagement ist ein alter Bekannter aus der IT – und andererseits ein neuer „Hidden Champion“ im digitalisierten Unternehmen. Warum? Weil Datenintegration und -aufbereitung einerseits eine ureigene und unverzichtbare Aufgabe der IT ist, deren Bedeutung weiter wächst. Andererseits aber stehen vor dem Hintergrund von datenbasierten Geschäftsprozessen und -modellen auch die Mitarbeiter

Advanced Analytics | Analytics | Data Management
Rainer Sternecker 0
Self-Service Data Preparation: Das Self steht für Value!

Data Preparation wird von Unternehmen bislang oft als Fleißaufgabe gesehen, die man gerne der IT überlässt. Doch weil die Fachabteilungen oftmals nicht lange auf ihre Daten warten wollen, haben dicke SQL-Bücher und Spreadsheet-Anwendungen immer noch Hochkonjunktur in den meisten Büros. Ist das sinnvoll? Nein, das ist nicht sinnvoll. Denn die

1 2 3