Machine Learning

Get the latest machine learning algorithms and techniques

Machine Learning
SAS Viya:ディープラーニング&画像処理用Python API向けパッケージ:DLPy

SASでは、従来からSAS Viyaの機能をPythonなど各種汎用プログラミング言語から利用するためのパッケージであるSWATを提供していました。 これに加え、よりハイレベルなPython向けAPIパッケージであるDLPyの提供も開始され、PythonからViyaの機能をより効率的に活用することが可能となっています。 ※DLPyの詳細に関しては以下サイトをご覧ください。 https://github.com/sassoftware/python-dlpy DLPyとは DLPyの機能(一部抜粋) 1.DLPyとは DLPyは、Viya3.3以降のディープラーニングと画像処理(image action set)のために作成された、Python API向けハイレベルパッケージです。DLPyではKerasに似たAPIを提供し、ディープラーニングと画像処理のコーディングの効率化が図られています。既存のKerasのコードをほんの少し書き換えるだけで、SAS Viya上でその処理を実行させることも可能になります。 例えば、以下はCNNの層の定義例です。Kerasに酷似していることがわかります。 DLPyでサポートしているレイヤは、InputLayer, Conv2d, Pooling, Dense, Recurrent, BN, Res, Proj, OutputLayer、です。 以下は学習時の記述例です。 2.DLPyの機能(一部抜粋) 複数のイルカとキリンの画像をCNNによって学習し、そのモデルにテスト画像を当てはめて予測する内容を例に、DLPyの機能(一部抜粋)を紹介します。 2-1.メジャーなディープラーニング・ネットワークの実装 DLPyでは、事前に構築された以下のディープラーニングモデルを提供しています。 VGG11/13/16/19、 ResNet34/50/101/152、 wide_resnet、 dense_net また、以下のモデルでは、ImageNetのデータを使用した事前学習済みのweightsも提供(このweightsは転移学習によって独自のタスクに利用可能)しています。 VGG16、VGG19、ResNet50、ResNet101、ResNet152 以下は、ResNet50の事前学習済みのweightsを転移している例です。 2-2.CNNの判断根拠情報 heat_map_analysis()メソッドを使用し、画像の何処に着目したのかをカラフルなヒートマップとして出力し、確認することができます。 また、get_feature_maps()メソッドを使用し、CNNの各層の特徴マップ(feature map)を取得し、feature_maps.display()メソッドを使用し、取得されたfeature mapの層を指定して表示し、確認することもできます。 以下は、レイヤー1のfeature mapの出力結果です。 以下は、レイヤー18のfeature mapの出力結果です。 2-3.ディープラーニング&画像処理関連タスク支援機能 2-3-1.resize()メソッド:画像データのリサイズ 2-3-2.as_patches()メソッド:画像データ拡張(元画像からパッチを生成) 2-3-3.two_way_split()メソッド:データ分割(学習、テスト) 2-3-4.plot_network()メソッド:定義したディープラーニングの層(ネットワーク)の構造をグラフィカルな図として描画 2-3-5.plot_training_history()メソッド:反復学習の履歴表示

Machine Learning
SAS Viya: ディープラーニングと機械学習の判断根拠情報

前回の「ディープラーニングの判断根拠」ブログでは、PythonからSAS Viyaの機能を活用するためのパッケージであるSWATを使用した例を説明しましたが、今回は、以下2点に関してご紹介します。 SAS ViyaのよりハイレベルなPython APIであるDLPyを使用した画像認識モデルの判断根拠情報 機械学習の判断根拠情報 1.SAS ViyaのよりハイレベルなPython APIであるDLPyを使用した画像認識モデルの判断根拠情報 この例では、複数のイルカとキリンの画像をSAS Viyaのディープラーニング(CNN)で学習させ、そのモデルに以下の画像を当てはめて、これがイルカなのか否かを判別するものです。 実際、この画像はイルカであると判定されたんですが。 SAS Viyaでは、その判断根拠となり得る情報の一つとして、入力画像のどこに着目したのかを以下の通り出力し、確認できるようになっています。 DLPyでは、get_feature_maps()メソッドでfeature mapを取得し、feature_map.display()で指定したレイヤーの内容を表示することができます。 以下は、レイヤー1のfeature mapです。 以下は、レイヤー18のfeature mapです。 白色の濃淡で、判別に影響を与えている箇所を確認することができます。 さらに、SAS Viyaでは、画像認識モデルの判断根拠情報を可視化する手法の一つである、Grad-CAMと同様に、画像の何処に着目したのかを、カラフルなヒートマップとして出力し、確認することもできるようになっています。 しかも、heat_map_analysis()メソッドを使用して、以下の通り、たった1行書くだけでです。 青、緑、赤の濃淡で、判別に影響を与えている箇所を確認することができます。 DLPyの詳細に関しては、以下をご覧ください。 https://github.com/sassoftware/python-dlpy 2.機械学習の判断根拠情報 もちろんディープラーニングだけではなく、従来からの機械学習のモデルによって導き出された予測や判断に関しても、それがなぜ正しいと言えるのか、具体的に言えば、なぜAさんはこの商品を買ってくれそうだと判断されたのか、なぜこの取引データは疑わしいと判断されたのか、を説明する必要性があるわけです。特に説明責任が求められるような業務要件においては、 ということでSAS Viyaの次期版には機械学習の判断根拠情報、モデル内容を説明するための機能が実装される予定です。 まず、影響度が最も高い変数は、という問いに対しては、従来からの変数の重要度で確認することができます。これをさらに一段掘り下げたものが、Partial Dependence (PD)です。 日本語では「部分従属」と言いますが。重要度の高い変数は、予測に対して、具体的にはどのように作用しているのかを知ることができます。 そしてこのPDを元にさらに一段掘り下げたものが、Individual Conditional Expectation (ICE)になります。 また、これらとは別に、なぜその予測結果に至ったのかを説明するテクニックとしてLocal Interpretable Model-agnostic Explanations (LIME)を活用することができます。 SAS Viyaベースの製品であるSAS Visual Data Mining and

Machine Learning
ディープラーニングの判断根拠

予測モデル生成において、従来は、人が考えてデータの中から特徴を抽出する必要がありましたが、ディープラーニングでは、この特徴を自動的に抽出して学習することが可能になっています。 半面、どのように特徴が抽出されているのかに関しては、基本的にはブラックボックスであり、説明責任が求められるような業務要件では、その分析結果を業務に活用することが難しい場合もあります。 しかし、近年ディープラーニングから出てきた結果の根拠=判断根拠を可視化する手法がいくつか考案されてきています。 関連情報サイト: https://qiita.com/icoxfog417/items/8689f943fd1225e24358 https://pair-code.github.io/saliency/ http://blog.brainpad.co.jp/entry/2017/07/10/163000 SAS Viyaでは、各種のディープラーニング(DNN, CNN, RNN)を用いた学習が可能ですが、今回はCNNを用いた画像認識において、判断根拠となり得る情報の出力に関してご紹介します。 この例は、複数のイルカの画像をCNNで学習し、対象の画像(写真)がイルカなのかどうかを判別するものです。 モデルを作成後、以下の画像をモデルに当てはめてスコアリングを実施。 この画像は「イルカ」だと判定されたのですが、その判断根拠の一つとして、以下のように、この画像のどの部分がより重要であると判断されているのかを可視化することが可能になっています。 【レイヤー1のfeature map】 【レイヤー18のfeature map】 SAS Viyaでは、モデルのスコアリング時のオプションとして、指定したレイヤ(層)の特徴マップ(feature map)を画像として指定ライブラリに出力することが可能です。 >> スコアリング用のアクション:”dlScore” の layerOut={出力先ライブラリとテーブル名} オプションと layers={出力対象レイヤ名} オプション >> 上図はライブラリに出力された画像(feature map)を表示したものです。

Artificial Intelligence | Machine Learning
SAS Viyaを「無償」で「実データ」で「体感」してみよう!

2017年12月にSAS Viyaの最新版3.3がリリースされました。 これに伴い、皆様には、大幅に拡張されたSAS Viyaの機能を存分に体感いただくために今版から、皆様がお持ちの「実データ」でSAS Viyaベースのすべての製品を自由に触っていただけるようになりました。 ぜひ、ご利用ください! 利用手順に関しては、以下のブログをご覧ください。 SAS Viyaを体感してみよう! ~SAS Viya無償試用版利用ガイド~

Machine Learning | Programming Tips
SAS Viyaにディープラーニングが登場! さっそく画像分類してみた。

SAS Viyaがリニューアルされまして、ついにディープラーニングが登場しました! SAS ViyaのディープラーニングではオーソドックスなDeep Neural Network(DNN)から、画像認識で使われるConvolutional Neural Network(CNN、畳込みニューラルネットワーク)、連続値や自然言語処理で使われるRecurrent Neural Network(RNN、再帰的ニューラルネットワーク)まで利用可能になります。 ディープラーニングを使うことのメリットは、従来の機械学習やニューラルネットワークが苦手としている画像や文章を認識し、高い精度で分類や推論することが可能になります。 高い精度というのは、ディープラーニングのモデルによっては人間の目よりも正確に画像を分類することができるということです。 例えばコモンドールという犬種がありますが、この犬はモップのような毛並みをしていて、人間ではモップと見間違えることがあります。 これは犬? それともモップ? こういう人間だと見分けにくい画像に対しても、ディープラーニングであれば、人間よりも正確に犬かモップかを見分けることができるようになります。 というわけで、今回はSAS Viyaのディープラーニングを使って画像分類をしてみたいと思います。 ディープラーニングの仕組み 画像分類のディープラーニングではCNNを使います。 CNNは画像の特徴を探し出す特徴抽出層と特徴から画像を分類する判定層で構成されています。   特徴抽出層は主に畳込み層とプーリング層で構成されています。 畳込み層で入力画像に対し、ピクセルの特徴(横線の有無とか斜め線とか)を探し出し、プーリング層で重要なピクセルを残す、という役割分担です。 判定層は、特徴抽出層が見つけた特徴をもとに、画像の種類を分類します。 例えば犬と猫の分類であれば、特徴抽出層が入力画像から、面長で大きな鼻の特徴を見つけだし、犬と分類します。   または、丸っこい顔立ちと立った耳の特徴を見つけだし、猫と分類します。   SAS Viyaで画像を扱う SAS ViyaディープラーニングでCifar10をネタに画像分類をしてみたいと思います。 Cifar10は無償で公開されている画像分類のデータセットで、10種類の色付き画像60,000枚で構成されています。 各画像サイズは32×32で、色はRGBです。 10種類というのは飛行機(airplane)、自動車(automobile)、鳥(bird)、猫(cat)、鹿(deer)、犬(dog)、蛙(frog)、馬(horse)、船(ship)、トラック(truck)で、それぞれ6,000枚ずつ用意されています。 画像は総数60,000枚のうち、50,000枚がトレーニング用、10,000枚がテスト用です。   画像データは以下から入手することができます。 https://www.cs.toronto.edu/~kriz/cifar.html さて、Cifar10を使って画像分類をしてみます。言語はPython3を使います。 SAS Viyaで画像分類をする場合、まずは入手したデータをCASにアップロードする必要があります。 CASはCloud Analytics Servicesの略称で、インメモリの分散分析基盤であり、SAS Viyaの脳みそにあたる部分です。 SAS Viyaの分析は、ディープラーニング含めてすべてCASで処理されます。 CASではImage型のデータを扱うことができます。 Image型とは読んで字のごとくで、画像を画像フォーマットそのままのバイナリで扱えるということです。

Machine Learning
SAS Japan 0
機械学習アルゴリズム選択ガイド

この記事はSAS Institute Japanが翻訳および編集したもので、もともとはHui Liによって執筆されました。元記事はこちらです(英語)。 この記事では、関心対象の課題に適した機械学習アルゴリズムを特定・適用する方法を知りたいと考えている初級~中級レベルのデータ・サイエンティストや分析担当者を主な対象者としたガイド資料を紹介し、関連の基本知識をまとめます。 幅広い機械学習アルゴリズムに直面した初心者が問いかける典型的な疑問は、「どのアルゴリズムを使えばよいのか?」です。この疑問への答えは、以下を含む数多くの要因に左右されます。 データの規模、品質、性質 利用できる計算時間 タスクの緊急性 データの利用目的(そのデータで何をしたいのか?) 経験豊富なデータ・サイエンティストでも、どのアルゴリズムが最も優れたパフォーマンスを示すかは、複数の異なるアルゴリズムを試してみなければ判断できません。本稿の目的は、特定の状況にのみ有効なアプローチを紹介することではなく、「最初に試すべきアルゴリズム」を何らかの明確な要因にもとづいて判断する方法についてガイダンスを示すことです。 機械学習アルゴリズム選択チートシート この機械学習アルゴリズム選択チートシートは、幅広い機械学習アルゴリズムの中から特定の課題に最適なアルゴリズムを見つけ出すために役立ちます。以下では、このシートの使い方と主要な基礎知識をひと通り説明します。 なお、このチートシートは初心者レベルのデータ・サイエンティストや分析担当者を対象としているため、推奨されるアルゴリズムの妥当性に関する議論は省いてあります。 このシートで推奨されているアルゴリズムは、複数のデータ・サイエンティストと機械学習の専門家・開発者から得られたフィードバックやヒントを取りまとめた結果です。推奨アルゴリズムについて合意に至っていない事項もいくつか残っており、そうした事項については、共通認識に光を当てながら相違点のすり合わせを図っているところです。 利用可能な手法をより包括的に網羅できるように、手元のライブラリが拡充され次第、新たなアルゴリズムを追加していく予定です。 チートシートの使い方 このシートは一般的なフローチャートであり、パス(楕円形)とアルゴリズム(長方形)が配置されています。各パスでYES/NO、または高速性/正確性を選びながら最終的に到達したものが推奨アルゴリズムとなります。いくつか例を挙げましょう。 次元削減を実行したいものの、トピック・モデリングを行う必要がない場合は、主成分分析を使うことになります。 次元削減が不要で、応答があり、数値を予測する場合で、高速性を重視するときには、デシジョン・ツリー(決定木)または線形回帰を使います。 次元削減が不要で、応答がない場合で、階層構造の結果が必要なときには、階層的クラスタリングを使います。 場合によっては、複数の分岐に当てはまることもあれば、どの分岐にも完璧には当てはまらないこともあるでしょう。なお、利用上の重要な注意点として、このシートは、あくまでも基本的な推奨アルゴリズムに到達できることを意図しているため、推奨されたアルゴリズムが必ずしも最適なアルゴリズムでない場合もあります。多くのデータ・サイエンティストが、「最適なアルゴリズムを見つける最も確実な方法は、候補のアルゴリズムを全て試してみることだ」と指摘しています。 機械学習アルゴリズムのタイプ このセクションでは、機械学習の最も一般的なタイプを取り上げ、概要を示します。これらのカテゴリーについて十分な知識があり、具体的なアルゴリズムの話題に進みたい場合は、このセクションを飛ばし、2つ先のセクション「各種アルゴリズムの概要と用途」に進んでいただいてかまいません。 教師あり学習 教師あり学習アルゴリズムは、実例のセット(入力データと出力結果)を基に予測を行います。例えば、過去の販売データを用いて将来の価格を推定することができます。教師あり学習では、ラベル付きのトレーニング用データからなる入力変数と、それに対応する望ましい出力変数があります。アルゴリズムはトレーニング用データを分析し、入力を出力にマッピングする関数を学習します。この関数は、トレーニング用データにおける入力/出力の関係を一般化することによって推定されます。この関数に新しい未知の入力データを与えると、それに対応する出力が算出され、その出力が未知の状況における結果の予測値となります。 分類:データを用いてカテゴリー変数を予測する場合、教師あり学習は「分類」と呼ばれます。これは例えば、画像にラベルや標識(例:犬または猫)を割り当てるようなケースです。ラベルが2つしかない場合は「2値(バイナリ)分類」、3つ以上のラベルがある場合は「マルチクラス分類」と呼ばれます。 回帰:連続値を予測する場合、その教師あり学習は「回帰問題」となります。 予測:過去と現在のデータを基に将来を予測するプロセスであり、最も一般的な用途は傾向分析です。具体例として一般的なのは、当年度および過去数年の販売実績を基に次年度の販売額を推定することです。 半教師あり学習 教師あり学習を行う上での課題は、ラベル付きデータの準備に多大な費用と時間がかかりかねないことです。ラベル付きデータが限られている場合には、ラベルなしの実例データを用いて教師あり学習を強化することができます。これを行う場合は、機械にとって完全な「教師あり」ではなくなるため、「半教師あり」と呼ばれます。半教師あり学習では、ラベルなしの実例データと少量のラベル付きデータを使用することで、学習精度の向上を図ります。 教師なし学習 教師なし学習を実行する場合、機械にはラベルなしのデータのみが与えられます。学習の目的は、クラスタリング構造、低次元の多様体、スパース(疎)ツリーおよびグラフなど、データの基底をなす固有パターンを発見することです。 クラスタリング:あるグループ(=クラスター)内の実例データ群が、その他のグループ内の実例データ群との間と比べ、(所定の基準に関して)高い類似性を示すような形で、実例データセットをグループ化します。この手法は、データセット全体を複数のグループにセグメント化する目的でよく使われます。グラスタリングの実行後に各グループ内で分析を実行すると、固有パターンを容易に発見できることが多々あります。 次元削減:検討の対象とする変数の数を減らします。多くの用途では、生データに極めて多次元の特徴が含まれており、一部の特徴は目的のタスクに対して冗長または無関係です。次元削減は、データに潜む真の関係性を発見するために役立ちます。 強化学習 強化学習は、環境からのフィードバックを基に「エージェント」(課題解決の主体者。例:ゲームのプレイヤー)の行動を分析および最適化します。機械は、取るべきアクションの選択肢を事前に教えられるのではなく、どのようなアクションが最大の報酬(例:ゲームのスコア)を生み出すかを発見するために、さまざまなシナリオを試行します。他の手法には見られない強化学習ならではの特徴は「試行錯誤」と「遅延報酬」です。 アルゴリズム選択時の考慮事項 アルゴリズムを選択する際は、正確性、トレーニング時間、使いやすさという3つの側面を常に考慮する必要があります。多くのユーザーは正確性を第一に考えますが、初心者は自分が最もよく知っているアルゴリズムに意識が向きがちです。 データセットが与えられたとき最初に考える必要があるのは、どのような結果になるにせよ、何らかの結果を得る方法です。初心者は、導入しやすく結果が素早く得られるアルゴリズムを選ぶ傾向がありますが、分析プロセスの最初の段階ではそれで問題ありません。まずは、何らかの結果を得て、データの概要を把握することを優先します。その後、データに対する理解を深め、結果をさらに改善することを目指し、より高度なアルゴリズムを試すことに時間を費やせばよいのです。 ただしこの段階でも、最高の正確性を示した手法が必ずしもその課題に最適なアルゴリズムであるとは限りません。通常、アルゴリズムから本来の最高パフォーマンスを引き出すためには、慎重なチューニングと広範囲のトレーニングが必要になるからです。 各種アルゴリズムの概要と用途 個別のアルゴリズムについて知識を深めることは、得られる結果と使い方を理解するために役立ちます。以下では、チートシートに掲載されている中でも最も基本的なアルゴリズムの詳細と、それらを使用すべき状況に関するヒントをまとめます。 線形回帰とロジスティック回帰 線形回帰は、連続従属変数 \(y\) と1つ以上の予測変数 \(X\) との関係をモデリングするためのアプローチです。この場合、\(y\) と

Artificial Intelligence | Machine Learning
小林 泉 0
人工知能:ブームと現実を切り分けて認識するために

現在大きなブームとなっているAIですが、行き過ぎた期待と警戒がその現実を見誤らせ、企業における経営課題の解決において、タイムリーな価値創出を停滞させている場面も見受けられます。現実を正しく捉えるための記事を、SASの上級副社長およびCTOであるオリバー・シャーベンバーガー(Oliver Schabenberger)が書いていますので、今回はそれを日本語訳してお届けします。 === 私たちはエキサイティングな時代に生きています。私たち人間と機械、オブジェクト(物体)、モノとの関係は急速に変化しつつあります。 洞窟で暮らしていた頃から、人間は受動的な(自動的に動くわけではない)道具と自分の声に自らの意思を託してきました。今日では、マウスとキーボードは操作したとおりに動きますし、Amazon Echoなどのスマートデバイスは、照明の点灯のような単純なタスクや、より複雑なタスク(例:人間の質問にアナリティクスを用いて応答する)の実行を手助けしてくれます。 しかし、人工知能(AI)の発展により、潮目が変わる可能性があります。機械は受動的なオブジェクトから、人間の生活に自らを織り込む能動的な存在へと変貌を遂げることができるのでしょうか? 機械が人間を動かすようになるのでしょうか、それとも人間が機械を動かし続けるのでしょうか? オブジェクトが「あなたの代わりに〇〇を済ませました」と人間に報告するようになるのでしょうか、それとも、人間が今後も何をすべきかをオブジェクトに指示し続けるのでしょうか? あらゆるモノがよりスマート、よりインテリジェントになっていく中、私たち人間は、自律型のインテリジェンスが取り仕切る生活空間の「囚われ人」となってしまう恐れはないのでしょうか? そのような状況に私たちはどこまで近づいているのでしょうか? AIの現状 あなたがもし、機械が世界を征服するのではないかと夜な夜な心配しているとしたら、どうぞぐっすり眠ってください。今現在使われているテクノロジーでは、決してそうした事態は起こりません。昨今では、少しでも賢い動作や想定外の動作をすれば何でもAIと呼ぶのがトレンドのようですが、多くは実際にはAIではありません。私の電卓は、私よりも計算能力が優れていますが、AIではありません。決定木もAIではありませんし、SQLクエリの条件句もAIではありません。 しかし、AIへと向かうトレンド、すなわち「機械、デバイス、アプライアンス、自動車、ソフトウェアに更なるスマート性を組み込む」というトレンドが存在するのは事実です。 人間よりも圧倒的な正確さでタスクを実行できるアルゴリズムの開発には、驚異的な進展が見られます。少し前までコンピューターには囲碁は無理と思われていたにもかかわらず、今や機械が人間を打ち負かし、人間には敵わないレベルへと突き進んでいます。また医療分野では、医用画像から特定タイプのガンを発見するアルゴリズムの正確性が、放射線科医と同等レベルに達しており、まさに患者の人生を一変させるような成果です。 これらのアルゴリズムが超人的な能力を示すのは、与えられた仕事を高い信頼性および正確性で、不眠不休で反復実行するからです。とはいえ、人間のように思考または行動できる機械を生み出す段階からは程遠いのが現状です。 現在のAIシステムは、人間が行うタスクを「コンピューター化された賢い方法」で実行するようにトレーニングされますが、トレーニングの対象は1つのタスクのみです。囲碁をプレイできるシステムは、ソリティアやポーカーをプレイすることができず、そのスキルを習得することもありません。自律走行車を運転するソフトウェアは、家の照明を操作することができません。 これは、この種のAIが力不足ということではありません。むしろ、あらゆる用途に高い専門性を提供できるため、多くの業種、恐らく全ての業種に変革をもたらすポテンシャルを秘めていると言えます。しかし、AIで何を成し遂げることができるかに関しては、先走りは禁物です。トレーニング用データにもとづき、教師あり手法を用いてトップダウン方式で学習するシステムは、データの内容を超えて成長することができません。つまり、こうしたシステムには創造、革新、推論(論理的に思考)は不可能です。 「信頼の飛躍的拡大」を選ぶかどうかは人間次第 たとえアルゴリズムがインテリジェンスを持つ日が来るとしても、必ずしも私たちの人生をアルゴリズムに委ねる必要はありません。アルゴリズムの利用を意思決定支援システムに留める、という選択も可能です。その対極にあるのは、あらゆる意思決定を人間の代わりにアルゴリズムに行わせるという選択であり、これは「(人間の機械に対する)信頼の飛躍的拡大」の究極と言えます。 そこには、意思決定において人間の介入は一切ありません。機械の自律性を手放しで受け入れて初めて、「真のAI」を受け入れる準備が整ったことを意味すると筆者は考えます。しかし、アルゴリズムが信頼できる偏りのない意思決定を行えるようになり、それがひいては人間に最大の利益をもたらすことが実証されうるとして、自分の人生の手綱を渡し、自分は何も入力せずにアルゴリズムに意思決定を行わせることを、あなたは心地よく感じるでしょうか? 自由に判断させた場合、機械はどれほど的確に振る舞うと期待しますか? 機械がどれほど短時間で仕事を学習すれば満足でしょうか? そして、学習を重ねる中、機械はいつモラルを獲得するのでしょうか? こうした質問を不快に感じるとしても、ご安心ください。あなただけではありません。筆者は、ソフトウェア・エンジニアがプログラミングしたモラルや発展途上のアルゴリズムが学習したモラルの不完全さのせいで命を失うよりは、自分自身の愚かさのせいで命を失う方を選びます。 インテリジェンスという幻想は今現在、完全に人間の掌中にあり、当面は人間のコントロールなしでは存在しえません。 当面私たちがAIに望めるのは、つい感心してしまうほどの賢さです。その他はブームに便乗した大騒ぎに過ぎないでしょう。 将来への準備 現在のような形のAIにはインテリジェンスがあるのでしょうか? そうではないと筆者は考えます。 インテリジェンスと呼ぶためには、何らかの形の創造性、革新性、直感力、自主的な課題解決力、感受性が必要です。私たちが今現在、ディープ・ラーニングにもとづいて構築しているシステムは、こうした特性を備えることができません。AIがいつインテリジェンスを獲得するのか、その時期をここで予測するつもりはありません。数十年前には「その段階に近づいており、数十年後には機械が人間のように行動したり思考したりするようになる」と考えられていましたが、そうはなっていません。今日のテクノロジーでは、依然としてこの問題を解決できないのです。 人類が「真のAI」の時代に到達するためには、破壊的なテクノロジー・シフトを経なければなりません。人類はその解決策をまだ発見していないと考えます。ただし、その探究を続けていることは確かです。

Machine Learning
小林 泉 0
機械学習のパラメータをオートチューニングしよう(回帰編)!

先日投稿した「機械学習のパラメータをオートチューニングしよう(分類編)!」の続きです。 今回は回帰分析をオートチューニングします。 あらまし 機械学習の課題はパラメータチューニングで、手動で最高のパラメータを探そうとすると、とても時間がかかり効率的ではありません。 SAS Viyaではパラメータチューニングを自動化するオートチューニング機能を提供しています。 オートチューニング機能を使うことで、限られた時間内、条件下で最高のパラメータを探索し、予測モデルを生成することができます。   今回やること 今回はオートチューニングを使って数値予測モデルを生成します。 使うデータは架空の銀行の金融商品販売データです。顧客の取引履歴と営業履歴から構成されており、新たな金融商品の販売数を予測するデータとなっています。 内容は以下のようになっており、約5万行、22列の構成です。 1行1お客様データとなっていて、顧客の口座情報や取引履歴、営業履歴が1行に収納されています。 ターゲット変数はcount_tgtで、これは各顧客が購入した金融商品数を表しています。 ほとんどが0(=未購入)ですが、購入されている顧客の購入数を予測するモデルを生成します。 今回はランダムフォレストを使って予測したいと思います。 ランダムフォレストは別々の決定木を複数作り、各決定木の予測値をアンサンブルして最終的な予測値とする機械学習の一種です。   まずは手動で予測 SAS Viyaでランダムフォレストを使って予測モデルを生成するにあたり、まずはCASセッションを作ってトレーニングデータとテストデータをインメモリにロードします。 # PythonからCASを操作するためのSWATライブラリをインポート import swat   # 接続先ホスト名、ポート番号、ユーザー名、パスワードを指定 host = "localhost" port = 5570 user = "cas" password = "p@ssw0rd"   # mysessionという名称のCASセッションを作成 mysession = swat.CAS(host, port, user, password)  

Machine Learning
小林 泉 0
機械学習のパラメータをオートチューニングしよう(分類編)!

機械学習で予測モデルを作るとき、課題のひとつにパラメータのチューニングがあります。 パラメータとはどういう設定値や制限値で機械学習の予測モデルを作るのかを示すものです。 料理に例えると、チャーハンを作る過程が機械学習のアルゴリズムだとすると、どういう具材をどのくらいの量入れるのかがパラメータです。 お米の品種や卵の有無、豚肉か鶏肉か、調味料の種類や量がパラメータになります。チャーハンの良し悪しはこれらパラメータの良し悪しに左右されます。おいしいチャーハンを食べるためには、具材をベストな組み合わせと量で投入する必要があります。 昼食においしいチャーハンを食べたので、チャーハンでたとえました。 話を戻すと、機械学習の決定木の深さであったり、ニューラルネットワークのニューロン数であったり、パラメータは自分で設定する必要があります。機械学習では複数のパラメータを組み合わせて、ベストなレシピを作らねば良い予測モデルは作れません。   SAS Viyaでは各種機械学習アルゴリズムを提供していますが、各機械学習にそれぞれのパラメータが用意されています。料理に例えると、メニューにチャーハンのみならず餃子、ラーメン、寿司、ステーキ、チーズケーキがあるようなものです。シェフ(≒データサイエンティスト)は全てのベストなレシピ(≒パラメータ)を探索せねばならず、労力がいります。 しかし! SAS Viyaには更に便利な機能として、オートチューニングというものが用意されています。 オートチューニングは最も良いパラメータを短い時間で探索してくれる機能です。料理に例えると、究極のチャーハンレシピをViyaが自動的に作ってくれる機能です。夢のようですね。 オートチューニングでは機械学習のパラメータを変えながら複数の予測モデルを作り、最も良い予測モデルのパラメータを探してくれるというものです。決定木だけでもパラメータは10種類以上あるのですが、それらの最良な値をみつけてくれます。 パラメータチューニングを行う際、最も安易な探索方法は各パラメータの全パターンを試すことです。全パターンを試せば、その中から最も良いものはたしかにみつかります。しかし欠点はパラメータチューニングに長い時間がかかってしまい、現実的な手法ではありません。 SAS Viyaのオートチューニングはより賢いパラメータ探索のアルゴリズムを4種類用意しています。 遺伝的アルゴリズム(Genetic Algorithm, GA):パラメータを遺伝子と見立てて、淘汰、交叉、突然変異を組み換えすことでパラメータを探索する。 ラテン超方格サンプリング(Latin HyperCube Sampling, LHS):層別サンプリングの一種で、各パラメータをn個の区間に分割し、区間からランダムに値を取り出してパラメータを探索する。 ベイズ最適化(Bayesian Optimization):説明変数と予測の間にブラックボックス関数があると仮定し、ブラックボックス関数のパラメータの分布を探索する。 ランダムサンプリング(Random Sampling):ランダムにパラメータの値を選択して探索する。 探索アルゴリズムを詳しく説明していると終わらないので説明を短くまとめました。SAS Viyaではいずれかのアルゴリズムを利用してオートチューニングを実行することができます。   今回はPythonからSAS Viyaを操作して、オートチューニングを試してみたいと思います。 まずはPython SWATをimportし、CAS Sessionを生成してデータをロードします。 # PythonからCASを操作するためのSWATライブラリをインポート import swat   # mysessionという名称のCASセッションを作成 mysession = swat.CAS(host, port, user, password)   #

Machine Learning
SAS Viyaのチートシートを作ってみました。

SAS Viyaでは購入前に使い勝手を試していただくため、無償使用版を提供しています。 https://www.sas.com/ja_jp/software/viya.html#preview もう試していただいた方もいらっしゃるかもしれませんが、SAS StudioやJupyter Notebook、Visual AnalyticsからSAS Viyaを操作して、データマイニングや機械学習を便利に試していただくことが可能です。 この無償使用環境では動作確認済みのデモプログラムを提供していますので、機械学習やプログラミングに不慣れでも迷うことはありません。   しかし機械学習を実業務で使い始めようとすると、どのプロシージャやメソッドを使えば良いのか、わからなくなることが多々あります。 SAS Viyaでは機械学習ユーザに不足ないよう、多種多様なプロシージャを提供していますが、プロシージャが増えるとどの場面でどれを使うんだっけ?と迷ってしまいます。   そこで、SAS Viyaのチートシートを作ってみました。 このチートシートを使えば、用途にあわせて必要なプロシージャを選択していくことができます。 SAS Viyaが提供するプロシージャから重要なものを掲載しています。   SAS ViyaはSAS PROCとActionsetという2種類のプログラミング仕様があります。 チートシートもPROC用とActionset用で2種類作りました。   PDF版は以下にありますので、ぜひご参照ください。 viya_cheat_sheet_20170721_jp  

Back to Top