Internet of Things

Stay up on IoT trends, business opportunities and the future of streaming data

Advanced Analytics | Analytics | Artificial Intelligence | Customer Intelligence | Data for Good | Data Management | Data Visualization | Fraud & Security Intelligence | Internet of Things | Learn SAS | Machine Learning | Programming Tips | Risk Management | SAS Administrators | SAS Culture | SAS Events | Students & Educators
小林 泉 0
📣SAS Hackathon 2025 まもなく開幕(応募〆切8/31)📣

SAS Hackathon 2025が間もなく開幕 公式サイトはこちら☞ https://www.sas.com/sas/events/hackathon.html はじめに 課題、テーマや使用データ 課題やテーマ、使用データは参加者ご自身で準備いただきます 2023年の日本からの参加チームは、オープンデータを使用したチーム、普段の自社内の取り組みプロジェクトのデータを使用したチームなどがありました 分析環境や、専門スキルの支援などはSAS側で用意されます コミュニケーションに使用する言語 日本からの参加者をサポートするメンターはSAS Japanから日本語を話す社員が担当する予定ですが、エキスパートや他の参加者との交流は英語になります 成果物に使用する言語 成果物(プレゼン動画やプレゼン資料、アプリケーションなど)は英語になります。昨年の日本からの参加チームはそれぞれ、英語でのプレゼン、無音声英語文字のみのプレゼン、英語機械音声など様々な方法で対応されました 作業場所 オンラインでの約1か月間の作業なので、作業場所は、参加チームそれぞれで確保いただきます 2025 キックオフイベントの様子 ソーシャル メディア プラットフォーム経由で視聴する LinkedIn☞https://www.linkedin.com/events/7333469635326984193/ Youtube☞https://www.youtube.com/live/yp008_MVfF4 SAS Hackathonとは 好奇心は私たちの規範です 素晴らしいアイデアは、どこからでも誰からでも生まれます。さまざまな地域から、さまざまな背景やスキルレベルを持つデータ愛好家が集まると、驚くべきことが起こります。これらの優れた頭脳は、私たちの日常生活、ビジネスのやり方、人道的活動への取り組み方を変えるような新しいものを発明するでしょう。好奇心旺盛な頭脳が協力し合うと、世界が勝利するからです。 特長 仲間のプログラマーと協力する  経験豊富なデータ サイエンティストから初心者の技術者、パートナー、SAS エキスパートまで、誰もがクラウド上の SAS® Viya でオープン ソースを使用します。 無料の学習リソースを活用する トレーニング コースや仮想学習ラボを利用して、AI、クラウド環境、業界に関するコーチングを活用できます。 新しいテクノロジーを簡単に試すことができる SAS ハッカソンは、SAS ユーザーだけでなく、初心者や新規参入者の好奇心を刺激します。Python と R の専門知識を持つオープンソース プログラマーでも、そのスキルを SAS Viya

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (6) – センサデータの品質を向上させる7つのポイント(後編)

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 記事の振り返り: 自覚症状が無いセンサデータの品質問題 これまで「自覚症状が無いセンサデータの品質問題」をテーマとし、「センサデータの品質を向上させる7つのポイント」について(前編)と(中編)の2回に分けてお話ししました。生産ラインのDXのために、センサデータを用いてデータ分析をしているのだが、思うような結果が得られていないケースが市場で発生していることをお伝えし、その原因の一つとして、分析対象となるセンサデータ自体の品質問題があることをお伝えしました。この問題は関係者が気付きにくく、対処方法も専門知識と経験が必要となります。 今回の後編では下記の⑥~⑦について御説明します。  図1. センサデータの品質を向上させる7つのポイント ⑥データレイクに蓄積すべきデータの選択(特徴量抽出) これまでの記事で、課題解決にマッチした高品質なセンサデータを収集することが重要だと述べてきましたが、他にも重要なポイントがあります。データレイクに蓄積すべきデータをどのように選択するのかが、昨今、課題となっています。  理由としては、AIモデル開発と更新のために、ある程度の生データ保存が必要となるからです。 この問題は、PoC段階では大きな問題になりません。PoCと称して大量にデータを取って専門の担当者が解析するからです。問題はPoC後の現場での運用です。 図2. 関連データ/センサ/特徴量の戦略的選択  それはなぜでしょうか? 各種センサが作り出すデータ量は非常に大きく、センサによっては毎分1 GB 以上のデータを生成してしまい、通信ネットワークの負荷の問題や、クラウド上でのデータ保存のコストといった現実的な問題が見えてくるためです。 例えば、図1の右側の表に示すように、サーモグラフィは動画像のため、1分間で1GB以上のデータを生成します。この場合、従量課金/ネットワークトラフィック減への対応が必要となります。温度センサ等のデータ量は、数個であれば小容量ですが、数百個もセンサを使用するケースですと、1分間に数MBにもなります。このようなデータをクラウドへ転送し続ける必要があるのでしょうか? また、高額なセンサを減らすために、できるだけセンサの数を絞りたいという要望も出てきます。これがいわゆるデータ選択(特徴量抽出)をどうたらいのかという課題の本質であり、データ分析上、特徴量の選定が重要だという理由とは異なります。では一体、どんなデータが本当に必要なのか、またデータ量を減らす時にどのような形でエッジコンピューティングを活用すべきなのでしょうか? この技術的な見解は、今後、ブログにて紹介させて頂きたいと思っておりますが、ITとOTの両方の視点から検討する必要があります。 キーワードとしてはプロ同士の意見交換です。 ⑦プロ同士の意見交換が鍵となる ここまで、センサデータの品質がデータ分析に与える影響について、データ分析企業の視点で述べてきましたが、どの注意点も専門知識と経験を要するものばかりです。つまり、成功の鍵は、プロ同士の意見交換だと言えます(図3)。もしくは「業界を超えたコラボレーションの必要性」、「ITとOTとの融合が鍵になる」と表現しても良いかもしれません。 特に現場の熟練者との協業は必須となります。現場の熟練者から伺いたい事としては、測定対象物の詳細、製造プロセスや作業工程、異常状態の詳細、また、どういうメカニズムで異常が起こるのか情報交換させて頂くことが重要です。そして、それがどれだけ困ることなのかをプロジェクトチーム内で意見交換をして頂くことが重要だと言えます。そして、センサデータ収集からデータ分析までを広く見渡した上で、AIを用いたセンサデータ分析システムを構築していくことが成功への近道だと筆者は考えています。難しく感じられる方もおられると思いますが、このプロ同士の意見交換に関しては、日本人エンジニアが得意とする高度な擦り合わせ文化が活かせると信じております。 図3. プロ同士の意見交換が大事  以上、センサデータの品質を向上させる7つのポイントを、3回に分けて紹介致しました。気になる点がございましたら、弊社までお問い合わせ下さい! 前回のブログ

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (5) – センサデータの品質を向上させる7つのポイント(中編)

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 記事の振り返り: 自覚症状が無いセンサデータの品質問題  これまで「自覚症状が無いセンサデータの品質問題」をテーマとし、前回は「センサデータの品質を向上させる7つのポイント(前編)」についてお話ししました。生産ラインのDXのために、センサデータを用いてデータ分析をしているのだが、思うような結果が得られていないケースが市場で発生していることをお伝えし、その原因の一つとして、分析対象となるセンサデータ自体の品質問題があることをお伝えしました。 この問題は関係者が気付きにくく、対処方法も専門知識と経験が必要となります。 そこで、「センサデータの品質を向上させる7つのポイント」について、今回の中編では下記の④~⑤まで御説明します。  図1. センサデータの品質を向上させる7つのポイント ④センサの設置方法  センサは種類に応じて必ずメーカが推奨する設置方法が決められています。図2は圧電型加速度センサの設置方法と注意点であり、加速度センサメーカから提供されている一般的な公開情報です。重要なのは、設置方法によっては必要なデータが得られないことです。例えば、計測可能な上限周波数は、プローブだと1 kHzが限界ですが、ネジ留めだと15 kHz近くまで測れます。これも筆者が経験した事例ですが、ユーザ様が自己流で両面テープを用いて加速度センサを貼り付けておられたために、振動が吸収されてしまい、正確な計測ができていなかったことがありました。これはさすがに、高度なデータ分析を実施する以前の問題でしたので、すぐに改善をお願いしました。 図2.  加速度センサの設置ミスによる振動データのロスト   ⑤データ収集装置の選定  データ収集装置自体の性能不足が問題になることがあります。これは盲点であり、自覚症状が出にくいものです。たとえ高精度なセンサを設置してデータ収集したとしても、適切なデータ収集装置を選定しなかったために、データの精度を低下させてしまうケースがあります。特に重要なのは、サンプリング周波数、分解能、同期計測の3つです(図3)。 図3. 適切な計測装置の使用が不可欠  サンプリング周波数に関しては、計測器の選定基準の一つとして必ずカタログ等に記載されており、また、近年はサンプリング周波数が不足しているデータ収集装置は稀なため、選定ミスの原因にはなりにくくなっています。しかし、分解能に関しては注意が必要です。例えば、加速度センサやマイクロフォンを用いた計測では、 24 bit分解能のデータ収集装置を使用するのが業界標準だが、16 bit分解能の装置を使用しているケースがあります(一般的なオシロスコープは8 bit分解能)。この場合、計測データに与える影響としては、波形再現性の悪化と微少な変化の取りこぼしが発生します。仮に機械学習を用いて異常検出をするとしたら、感度不足が起こる可能性があります(表1)。  表1. センサ計測ミスの原因とデータ分析に与える影響    極めて重要であるにもかかわらず、ほとんど意識されていないのが、同期計測です。各種センサデータ同士の時間的タイミングが取れていない場合は、厳密なデータ分析ができない場合があるからです。例えば、周期性のある回転機械や往復運動機械の異常検知を行う場合には、各種信号の立ち上がりタイミングや信号の発生サイクルが異常検知上、大きな意味を持つため、同期が取れていないデータでは異常検出が困難な場合あります(図4)。厳密には、計測装置の同期精度が、実施したいデータ分析用途に合っているかどうか判断する必要があります。高速動作をする精密機械の状態監視では、マイクロ秒レベルの同期精度が要求される場合もあり、一般的な工作機械ではミリ秒レベルで十分な場合があります。 図4.同期計測の重要性 データ収集装置の選定ミスにより、不具合の発見ができなかったという事例を、筆者は数件経験しています。例えば、高速印刷機の印刷ズレの原因分析に携わった時のことです。原因はベアリングのわずかな損傷で、それが原因で印刷ズレが発生していました。ですが、お客様のお持ちのデータ収集装置は、サンプリング周波数と分解能が低く、異常波形が検出できておりませんでした。そのため、筆者が持ち込んだデータ収集装置を使い原因分析は成功しました。加速度センサは最高のものでしたが、それを活かしきれるデータ収集装置の選定に問題があったという事例でした。 これまでの記事で、センサデータの品質を向上させる7つのポイントのうち5つを紹介してきました。 残り2つのポイントは、後編にて御説明します。 前回のブログ  次回に続く

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (4) – センサデータの品質を向上させる7つのポイント(前編)

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 前回の振り返り: 結果が出ないPoC(Proof of Concept:概念実証)  前回の記事では「自覚症状が無いセンサデータの品質問題」についてお話ししました。生産ラインのDXのために、センサデータを用いてデータ分析をしているのだが、思うような結果が得られていないというケースが市場で発生していることをお伝えし、その原因の一つとして、分析対象となるセンサデータ自体の品質問題があることをお伝えしました。 この問題は関係者の自覚症状もないため気付きにくく、対処方法も専門知識と経験が必要となります。 そこで、今回から前編/中編/後編の3回に分けて、「センサデータの品質を向上させる7つのポイント」について御説明します。 センサデータの品質を向上させる7つのポイント  現場では正確なセンサデータ収集(計測)を行っているつもりでも、気付かずに失敗しているケースが数多く存在していることに注意して頂きたいです。これは、計測ミスしたデータをいくら解析しても、良い結果は得られないからです。このような計測ミスを防ぐためのポイントは以下の7つだと言えます。 ※本記事では、上記の①~③まで御説明します。 ① 異常状態の発生メカニズムの理解(測定対象物の理解) この異常状態の発生メカニズムの理解は、測定対象物の理解を深めることだと言い換えることもできます。 いくつか例をあげてみます。ポンプのような回転機械の軸受けの不具合は異常振動として現れ、その結果として異音が発生します。また、音響機器はスピーカの取り付け不具合により、ビビリ音という異音が現れます。そして、プレス機のような往復運動機械の場合は、往復周期がぶれることにより、生産品の加工精度にバラツキが生じることがあります。さらに、射出成形機の場合は、材料の注入圧力の時間的変化にバラツキが生じた場合にうまく成形できない場合があります。 このように、測定対象物の異常状態が、なぜ起きるのかを物理的な観点から把握することが第1ステップとなります。 ところがこれが意外と難しいため、解決策としては、異常状態を把握している可能性の高い、現場の熟練オペレータなどからの情報収集が重要になります。 ② センサの選択(取得データの選定) よくあるミスとしては、センサの選択ミス、いわゆる取得データの選定ミスがあげられます。原因の一つは、上述の「①異常状態の発生メカニズム」が事前に理解できておらず、適切なセンサ選定ができなかったことに起因しています。例えば、回転機械の軸受けの不具合は異常振動として現れるため、異常検知のためには加速度センサを用いて振動データを取得することがベストだと言えます。また、音響機器のスピーカの取り付け不具合によるビビリ音の検出にはマイクロフォンを用いた音響計測が適切だと考えられます。 実はセンサ選定が不要な場合もあります。例えば、機械の制御信号が外部出力されているようであれば、そのままデータ収集することも可能です。 他にも原因があります。それは、システム構築を担当しているシステムインテグレータ(SIer)の得意分野が影響しているケースがあります。実際、SIerが得意としていないセンサは選定候補に上がってこないケースがあります。表1は、状態監視のために使用される代表的なセンサをまとめたものです。センサの種類によっては専門メーカや専門のSIerがいるものもあり、中には高性能な計測器が必要とされるセンサもあります。これは筆者が経験したことですが、製造装置の状態監視の際に、電流を使った異常検知の方が適切だと思われるケースがありました。ですがそこでは加速度センサが使用されていました。理由は業者が得意とするセンサ計測領域に偏りがあったことと、特に明確な理由がないまま、加速度センサが選択されていた状況でした。無論、生データには異常信号が弱く含まれており、データ分析をしても良い結果が得られていませんでした。そのため、筆者はセンサの変更を進言しました。 表1.状態監視に使用される代表的なセンサ ③ センサの取付け位置 センサの取付け位置も重要です。例として生産品の品質管理と製造装置の異常検知の例をあげてみます。機械はローラ機械である。図1左側の写真は、加速度センサを用いた軸受けのモニタリングであり、X、Y、Z軸に加速度センサが取り付けられている。この例は正しく設置されている例である。  医者の診断に例えれば、心臓の診断のために心音を聴こうとする医者は、どこに聴診器をあてるでしょうか? もちろん胸ですよね? 足に聴診器をあてて心音を聴こうとするお医者様がいたらかなり心配になりますよね? このような、あり得ない状況がセンサの取付け位置のミスとして起こっている場合があります。このような事態を防ぐには、「なぜそのセンサを設置するのですか?」とSIerに質問するなり、自問自答してみると良いと思います。また、「設置するセンサの数、取り付け方向はどうすべきか?」という問いに関しても明確な理由を持っておきたいですね。             図1.生産品の品質管理と製造装置の異常検知(ローラ機械の例) 以上、センサデータの品質を向上させる7つのポイントのうち3つを紹介しました。 次回は、④~⑤について御紹介します。 前回のブログ  次回に続く

Analytics | Data for Good | Data Visualization | Internet of Things | Learn SAS
0
サステナビリティ経営へのアナリティクス (2)

はじめに 今回は、地球環境に関する喫緊の課題であるカーボンニュートラル対策およびグリーン成長戦略におけるSASの取組みをご紹介します。 カーボンニュートラルに向けた動向 159か国・地域をカバーしたパリ協定*1に締結した日本は、2050年までにGHG(温室効果ガス)排出を全体としてゼロにする(GHGの排出量と吸収量を均衡させる)カーボンニュートラルを目指すことを宣言しています。すべてのインダストリーで多くの企業はこれをカバーするグリーンビジネス戦略の施策を展開し、マテリアリティの中核に置いたカーボンニュートラルに向けた事業を推進しています。すでにヨーロッパを中心に35の国(2021年9月時点)で炭素税が導入され、GHG排出量に応じた課税がされています。日本では地球温暖化対策税だけですが、今後より厳しい税率の炭素税の導入が検討されています。 グリーン成長戦略 温暖化への対応を成長の機会ととらえたグリーン成長戦略*2は、14の重点分野が設定されており、グローバル市場や世界の巨大なESG投資意識し国際連携を推進したゲームチェンジが始まっています。これらの重点分野での目標は、高いハードルによりイノベーションが必要と考えられています。企業はESGに係る情報開示を求められ、統合報告書やサスティナビリティレポートなどでESG情報を開示しており、カーボンニュートラルの取組みはその中核をなしています。SASにおいても長年にわたり推進しています。 サステナビリティのリーダーとしてのSAS SASは、企業のサステナビリティのリーダー*3として、従業員、サプライヤー、および顧客と緊密に連携し、省エネ、排出管理、汚染軽減、節水、グリーンビルディング、およびその他のプログラムに焦点を当てたプログラムで環境フットプリントを削減しています。スマートキャンパスプロジェクトを通じて運用を改善するためのデータのストリーミングから、ソーラーファームからのクリーンエネルギーでオフィスビルに電力を供給するまで、SAS Visual Analyticsを使用して、環境パフォーマンスを収集、管理、計算、および報告をしています。 SASの環境プログラムの成果 SASの2020年の環境プログラムの主な成果は次のとおりです。   カーボンニュートラルの取組み SASは、パリ協定の目標に引き続きコミットし、2050年のカーボンニュートラルな目標を設定しています。それによりサイエンスに基づく目標の達成に取組む最初の1,000社の1つとして認められました。 SASの主要なエネルギーおよびGHG排出削減イニシアチブには、積極的なエネルギーおよびGHG排出削減目標の設定、LEED® (建築や都市の環境性能評価システム) ガイドラインに準拠した施設の建設と維持、電気自動車充電ステーションの設置、再生可能エネルギーへの投資、オフィスビルおよびデータセンター向けのスマートなエネルギー効率の高い技術の追求、電話会議の奨励が含まれています。SASは、自社の独自のソフトウエアを使用して、世界中の施設のエネルギーと排出量の要件を収集、理解、管理するプロセスを改善し、消費傾向を報告して積極的に影響を与える能力を高めています。環境プログラムは、SASソフトウエアを使用して削減戦略を策定し、対策間の関係を分析して最大の効果を持つ施特定、決定パフォーマンス指標の開発および監視を実行しています。 次に代表的なイニシアチブを紹介します。 クリーンエネルギーシフト SDGs目標7「エネルギーをみんなにそしてクリーンに」とSDGs目標13「気候変動対策を支援するために」への施策 SASは再生可能エネルギーの導入とクリーンエネルギーの経済的および環境的利益を積極的に提唱しています。 SASは、ノースカロナイナ州ケリーにある広大なグローバル本部キャンパスに自らのSASソーラーファームを構築、グリーンエネルギー自社の電力、移動に利用するEVへの電源供給を実現しています。SASソーラーファームがノースカロライナ州知事ロイ・クーパーにクリーンエネルギー経済とパリ協定の支援のための執行命令に署名する場所として選ばれた後、SASはクリーンエネルギーと炭素政策の設計を支援するために州のクリーンエネルギー計画で推奨されているように利害関係者会議に継続的に参加ました。 スマートシティー SDGs目標11「住み続けられるまちづくりを」への施策 SASはSmart Cities Council*4、Envision America*5、Research Triangle Cleantech Cluster(RTCC)*6などの組織とも提携し、接続されたデバイス、ソーシャルメディア、モノのインターネット(IoT)から供給されるデータの爆発的な増加を利用して、自治体のスマート化(スマートシティー)を支援しています。人工知能(AI)、ブロードバンドワイヤレス、クラウドコンピューティング、IoTネットワークなどの相互依存テクノロジーの理解を深めることで、効率の向上、コストの削減、機会の特定、気候変動の影響の緩和を支援します。 スコープ別の世界のGHG排出量 サプライチェーン排出量(スコープ1からスコープ3に分類される*7)の全体像を把握し、効果的な削減対象を特定して長期的な環境負荷削減戦略や事業戦略策定のインサイトを抽出することが重要と考えています。 SASは自社ソフトウエアによりデータ収集、分析、可視化、予測を行っています。これにより現状を迅速かつ正確に把握し、統計モデルやAIモデルにより予測・最適化しゴールへの軌道や実現性を描いています。アナリティクスによる意思決定により確実な目標達成を実践しています。 *SAS Visual Analyticsによる環境ダイナミックレポート グラフ1: スコープ別GHG排出量   *SAS Visual Analyticsによる環境ダイナミックレポート グラフ2: スコープ1とスコープ2のGHG排出量トレンド その他の環境への取組み 環境におけるその他の分野でも次のように多くの取組みをSASのアナリティクスにより実施しています。詳細は割愛しますのでご興味がある方はCSRレポート*8をご覧ください。 廃棄物の転換(SDGs⽬標12)、紙の消費削減·リサイクル(SDGs⽬標12、15)、節水(SGD目標 6)、排水管理(SGD目標

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (3) – 自覚症状が無いセンサデータの品質問題

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 今回から、「自覚症状が無いセンサデータの品質問題」に関連した話題をお伝えしていきます。  結果が出ないPoC(Proof of Concept:概念実証)  SASは世界各国に支社を持ち、製造業DXの実現に向けた数多くのデータ分析案件を取り扱っています。 よく頂く御相談内容としては、生産品の品質管理と設備保全系に関連するデータ分析システムの導入検討です。(図1)    図1. 生産ライン向けDXとしてよくある御相談   ところが、PoCとしてセンサデータを用いてデータ分析をしているが、思うような結果が得られていないというケースが市場で発生しています。多くの方がデータ分析手法に問題があるのではないかと考え、データ分析のスペシャリストである弊社に御連絡を頂きます。たしかに分析手法の問題もあり、原因は様々ですが、意外と盲点になっているのが分析対象となるセンサデータ自体の品質問題です。  センサデータの品質問題とは何か?  データ分析はデータ収集から始まります。そして、そのデータの質が分析結果に影響を与えることは容易に想像できます。図2はセンサデータ分析システムの構築の流れを示しています。システム構築は、データ収集からスタートし、データ蓄積、そしてデータ分析という順番で実施され、手動でデータ分析の結果が出るようになった段階で自動化するという流れが一般的です。  図2. センサデータ分析システムの構築の流れ   図3は、センサデータの分析の際にAIの導入を意識して描いたものです。流れとしては、経営上の目標設定から始まり、データ取得、特徴量抽出/次元削減、そしてモデル作成へと進んでいきます。ここで皆様に質問させて頂きたいのは、どの工程が一番重要なのかということです。無論、どの工程も専門家の知見が必要であり、重要かつ難易度が高いのは当然ですが、最も重要なのは前半のデータ取得と特徴量抽出だと、あえて強調します。言い換えますと、モデル作成に使用されるセンサデータの品質(精度)が重要だということです。当然ではありますが、センサデータの質が悪い場合、データ分析(作成するモデルの精度)に影響が出てしまうためです。 医者の診断に例えれば、検査データが間違っていたら間違った診断を下してしまうのと一緒であり、センサデータの品質は極めて重要だと言えます。  図3. AIを用いたセンサデータ分析システムの開発の流れ 自覚症状が無いセンサデータの品質問題  この問題の恐ろしい点は、システム開発に携わっている関係者の皆様にとって自覚症状が表れない場合が多いことです。 そもそも、データ分析の結果が出ない原因が、上述のセンサデータの質に関係していることを、どうやって判断すれば良いのでしょうか? 当然、他の原因も考えられます。   先日、お医者様と健康診断の検査結果のお話をした際に気がついたのですが、お医者様は検査データの意味や限界、誤差要因をよく御存知のようでした。そして総合的に私の健康状態を判断しておられるようでした。思わず、その秘密を知りたいと思い質問してしまったのですが、お医者様の回答は「過去の事例と経験即かなぁ~~??」と、お答えいただきました。  ということで、次回以降、私の経験即に基づいたチェックポイントを御紹介していきます。  前回のブログ  次回に続く

Analytics | Data for Good | Internet of Things | Learn SAS
0
サステナビリティ経営へのアナリティクス (1)

はじめに 近年サステナビリティ経営は多くの分野で注目されています。環境・社会の変化や価値観の変革に対応しながら、長期にわたり市場から求められ、継続的に価値提供を行い、社会から信頼され続けることが企業にとって最も重要と考えられています。 最近では、気候変動、COVID-19パンデミックなどの社会環境の変動により、生活者、消費動向、企業活動、サプライチェーンなどに大きな影響を及ぼす中で、どのように対応し取り組んでいくかが喫緊の課題となっています。 今回のブログでは、これらの変化対して持続可能な世界を実現するための「サステナビリティ経営」に関してSASのアナリティクスアプローチをテーマに数回にわたり見ていきたいと思います。 SDGsとESG 地球規模の課題を踏まえた全世界共通の持続可能な成長戦略であるSDGsは、今や大企業の多くがサステナビリティ経営*1の計画にマテリアリティ(重要課題)として織り込み取り組まれています。また、環境・社会・ガバナンスの観点で企業活動を分析評価するESG*2は、企業価値を見通す上での重要性として認識されています。 アナリティクスが果たす役割 環境や社会で起こっている多くの変化は、生活者の価値観および消費活動に変化をもたらします。企業は、その変化を的確に捉え迅速に対応していくことが求められます。それらの変化を近年のデジタル・テクノロジーを用いて迅速に把握し、AIやアナリティクスによるインサイトに基づく意思決定や課題解決、商品やサービスの継続的な改善や高度化などにより新たな価値を提供することは、企業のサステナビリティと競争力を創出し、サステナビリティ経営において非常に重要となります。 中長期計画のマテリアリティとして掲げられたSDGsの達成度評価やESG評価においてもアナリティクスの手法を用いた評価手法やツールが多く用いられ、企業活動の見える化を推進するとともに、投資家などへ開示することでESG投資を促すとともに、企業価値向上や創造を進めています。SASは、AIによるESG管理とレポート作成に関するサービスを提供しています。 また、企業や組織の活動においても、AIやアナリティクスによるインサイトや予測といったデータ利活用をもとに、CO2削減、エネルギー対策、フードロス削減、水資源保全、汚染軽減など様々なサステナビリティに関する課題解決に向けて、アナリティクスが活用されています。*3*4 SASの取り組み SASは自社のCSR活動として、エネルギー節約、GHG(温室効果ガス)排出管理、汚染軽減、水保全、グリーンビルディング、およびその他のプログラムにより環境を改善などに取り組んでいます。また、サステナビリティ経営のリーダーおよび提唱者として、高度なテクノロジーと経験豊富なスタッフにより、多くのソフトウエア、ツール、サービスなどを企業や組織に提供してきています。これらは追って紹介いたします。今回はSASのCSRレポート*5から抜粋してSASの取り組みをいくつか紹介します。 アナリティクスによる人道支援/社会支援 ビッグデータアナリティクスが世界中の短期および⾧期の開発⽬標の達成に役立つという広範な証拠があります。アナリティクスの世界的リーダーとして、SASは、貧困、病気、飢餓、⾮識字などの社会の最⼤の問題のいくつかを解決するために、最先端のテクノロジーと専⾨知識を適⽤することに情熱を注いでいます。 SASは、常により良い世界を構築するためにそのテクノロジーを使⽤することを挑戦しています。国連のSDGsが不平等を減らし、健康的な⽣活を確保するために取り組んでおり、SASはそれがすべての⼈にとってより明るい未来を創造するのを助けることができる機会を探しています。 SASの社会イノベーションイニシアチブは、世界の進歩を加速させ、世界をより持続可能な未来に向けて動かす創造的な⽅法の発見を支援します。 SASがこの⽬標をサポートする⽅法の1つは、 Data for Goodを推進する運動です。貧困、健康、⼈権、教育、環境に関する⼈道問題を解決するために有意義な⽅法でデータを使⽤することを奨励します。 ⾼度なアナリティクスとIoTによる健康なミツバチの個体数の増加 World Bee Countを使用すると、ミツバチのデータをクラウドソーシングして、地球上のミツバチの個体数を視覚化し、これまでのミツバチに関する最大かつ最も有益なデータセットの1つを作成できます。 SASのデータ視覚化により、クラウドソーシングされたミツバチや他の花粉交配者の場所が表示されます。 プロジェクトの後の段階で、研究者は作物の収穫量、降水量、その他のハチの健康に寄与する要因などの重要なデータポイントを重ね合わせて、世界の花粉交配者のより包括的な理解を集めることができます。 Joseph Cazier, アパラチア州立大学分析研究教育センター教授兼常務理事   ミツバチを救うことは私たちの⾷糧供給にとって最も重要であり、⾼度なアナリティクスがミツバチと私たちの未来を維持するための鍵となる可能性があります。 SASのモノのインターネット(IoT)、機械学習、視覚アナリティクス機能により、健康なミツバチの個体数の維持とそのサポートができる可能性があります。 2020年、SASは、テクノロジーが世界中の花粉交配者の個体数を監視、追跡、改善する3つの別々のプロジェクトに参加しました。まず、SASのデータサイエンティストは、聴覚データと機械学習アルゴリズムを通じて、侵入しないで蜂の巣のリアルタイムの状態を監視する⽅法を開発しました。 SASはまた、世界のミツバチの数についてアパラチア州立⼤学と協力して、世界のミツバチの個体数データを視覚化し、それらを保存するための最良の⽅法を抽出しました。さらに、SAS Viya Hackathonの受賞者は、機械学習を通じてハチのコミュニケーションを解読し、⾷料へのアクセスを最⼤化し、⼈間の⾷料供給を増やしました。 困っている⼈を助けるための最善のサポートを理解する 私たちの優先事項は、人生の最も困難な季節を通して家族を支援することです。その仕事の多くは、目に見えないところに隠れているホームレスを支援することです。それが私たちの最善の策です。SASは私たちの目の前でデータを取得し、以前は見ることができなかった隠された洞察を発見することができました。それはSASが最も得意とすることです。正直なところ、完璧な組み合わせでした。 Leslie Covington, Executive Director, The Carying Place     ホームレスに苦しんでいる多くの人は、自給自足できるための指導と支援を求めてThe Carying Place(TCP)に目を向けます。 手書きのドキュメントと一貫性のないスプレッドシートの山の中に27年分のデータがあるため、TCPはSASを利用して、参加者の成功の指標をより適切に測定し家族にふさわしい支援を提供しました。 SASボランティアは、デモグラフィック、保険、住宅、退役軍人のステータス、障害のステータス、予算ファイルなど、参加している家族のデータを分析し、TCPのニーズを最もよくサポートできるモデルを選択しました。

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (2) - 生産ラインにおけるAIを用いた状態監視の種類

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。 そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 はい、今回は、「生産ラインにおけるAIを用いた状態監視の種類」について解説します。 図1に示した通り、種類としては4つに大別されます。 どれを実現したいのかで、取得すべきセンサデータの種類や、データ分析システムの構築難易度が変わってきます。 読者の皆様は、どれを実現したいとお考えでしょうか? 図1.生産ラインにおけるAIを用いた状態監視の種類は4つある 1つ目が異常検知です  これは生産品の品質異常や生産ラインの設備機械の異常を捉えるものであり、学術的には「教師なし学習」と呼ばれる手法を用います。この場合、異常時のデータを予め用意する必要がないため、不具合データの取得が困難な製造業の現場において有効となります。例えば、正常時の各種センサデータを基準とし、どれだけ正常状態から離れたかで、異常を検出する方法です。 2つ目は原因診断です これは異常発生後に、何が原因なのか特定するものであり、学術的には「教師あり学習」と呼ばれる手法を用います。この場合、異常時のデータを予め用意しておく必要があります。 原因診断が必要とされる理由としては、対処方法の検討をつけるためです。 製造装置であれば、点検箇所や分解すべき箇所を特定することにより、分解コストや部品交換コストを抑えることができます。 これは大型機械の場合、特に重要であり、この原因診断は「精密診断」とも呼ばれ、まさに職人技が要求される分野です。 3つ目が品質/寿命予測です これは各種データから、生産品の品質を予測したり、稼働中の設備や部品が、あとどれくらい使用できるか日数を予測するものです。 例えば、生産品の品質予測が可能になると、抜き取り検査の精度が向上し、ランダムにサンプル取得をするのではなく、品質上懸念がありそうなものをサンプルして効率良く評価できるようになります。 また、設備や部品の寿命予測が可能になれば、高額な部品をできるだけ長く使用することができますし、メンテナンス日程を戦略的に決めることも可能になります。 4つ目がパラメータ最適化です これは、期待した品質で生産するためには、どのような製造環境や材料構成が必要なのか、また、どのように製造装置を制御したらよいのか決定することができます。 図1に示したデータ活用の流れは、人間の健康診断と全く同じであり、1番から4番まで順番に実施する必要があり、飛び越えることはできません。 医療に例えますと、1番の「異常検知」は、正常時との変化を検出するものであり、いわば定期健康診断に相当するものです。 2番の「原因診断」は、定期健康診断で早期発見された異常を、さらに掘り下げて精密検査を行うものです。 3番の「品質/寿命予測」に関しては、医学でも同様であるが、これまでの長年にわたるデータが揃うことにより、治癒率予測が可能になります。 4番の「パラメータ最適化」は、健康で過ごすための予防方法だと言えます(図2)。そして、豊かな人生を過ごすために、どなたも4番の予防までを期待されておられると思います。 図2. 医療診断の流れと、生産ラインにおける品質管理/設備状態監視の流れはよく似ている 生産ラインでも同様です。最後の4番まで実現できれば、ビジネス上の費用対効果(ROI)は最大となります。 それには、分析に必要な各種データを準備する必要があり、その質も重要になります。 しかしながら現実問題として、いきなり4番から実現することはできないため、4番のパラメータ最適化の実現をゴールとしながら、1番から順番に実現していく必要があることを御理解ください。また、医学でも同様のことがいえるかと思いますが、生産ラインにおける状態監視対象物によっては、1番の異常検知が技術的な限界となり、2番以降に進めない場合もあります。 この見極めも重要となってきますが、この点は本ブログのテーマとして別途取り扱いたいと思います。 前回のブログ  次回に続く

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (1) - なぜ医者の診断に例えて学ぶと良いのか?

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。 そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。 いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) とOperational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 ------ はい、本日は 「なぜ医者の診断に例えて学ぶと良いのか?」 をテーマにお話しします。 近年、製造業DX、またはインダストリアルIoTと呼ばれるトレンドにより、AIを用いたセンサデータの分析が流行しています。 例えば、 ・ 製造装置の故障予測 (設備状態監視) ・ 生産品の不具合検出 (生産ラインの品質管理) が人気の用途です。 背景としては、熟練者のリタイヤを見越して、彼らが持つ暗黙知の形式知化が必要とされていることや、熟練者ですら見つけられない不具合を検出することで更なる品質向上を実現したいという考えが背景にあります。 そのため、データ分析のリーディングカンパニーである弊社には、世界各国において、センサデータの分析に関する御相談が数多くやってまいります。 それと同時に様々な誤解が生じていることがわかってまいりました。 ところが、数多くのお客様とお話をしていくと、多くの誤解や勘違いが存在することがわかってきました。 例えば、 分析アルゴリズムに関して、熱心に調査されているお客様、がおられます。 ごく普通のニーズだと思いますが、お話を伺うとこんな感じになることがあります。 監視対象物や起こっている異常状態が不明 データは持っておらず、機械学習等の分析手法を調査されているご様子であったり、監視対象となる設備機械や生産品が決まっていないというお客様です。 要は情報収集段階だということです。この場合、優秀なデータサイエンティストでも明確な回答はできず、お客様もなかなか納得されない状況が生まれます。 この状況は、医療で例えるなら、病気にもなっていないのに病院に行き、治療方法を熱心にお医者様に相談している状況と同じではないでしょうか? この例え話をさせて頂くと、すぐに状況を御納得頂けます。 データ分析をしても結果が出ない 2017年頃にIoTが流行った際に、まずはセンサで計測してみましょうということで「スタートアップキット」なるものが流行ったことがあります。 この名残で、分析しても結果がでなかったという苦い経験をされたお客様が数多くおられたようです。 投資もしましたし、会社組織としても困りますよね。そこで弊社に相談が来るわけです。 もちろん分析手法が原因である場合もありますが、実は問題の大半は、センサの選定ミスや、取付けミス、生データの取得方法などに関係しています。 この状況は、医療で例えるなら、心臓の病気を見つけるのに、聴診器を足に当てて心音を聞いているような状況が起こっているということです。また、ウィルス性の病気を聴診器で見つけようとしているようなケースも見うけられます。 これでは絶対に病気は見つけられませんよね? 医療に例えれば、あり得ない状況ではありますが、センサデータ分析の世界では、頻発している問題です。 正直、驚きではありますが事実です。 私はこのような状況を、非常にもったいないと感じています。 そのため、本ブログを通して、AIを用いたセンサデータ分析システムに関して生じている様々な誤解について、医者の診断に例えながら、わかりやすく御紹介していけたらと思っております。 その理由ですが、医療診断と、製造業系データの分析の流れは似ているからです(図1)。また、医療診断は、多くの皆様が実体験をお持ちですので、例え話を通して、言われてみればそうだなという感覚を持って頂きやすいのではないかと考えております。 図1. 医療診断の流れと、生産ラインでのデータ分析の流れはよく似ている 今回は、医者の診断に例えると、色々と見えてきますというお話をさせて頂きましたが、次回からは、よくある誤解に関して、次々に御紹介していきます。 テーマとしては、こんな感じの物を予定しています。 ・ 生産ラインにおけるAIを用いたデータ分析の種類について ・ 無症状であり、異常検出が甘くなる原因となる「センサの選択ミス(取得データの選定ミス)」 ・ 無症状であり、異常検出が甘くなる原因となる「センサの設置方法のミス」 ・ 無症状であり、異常検出が甘くなる原因となる「取得データの質が悪いケース」 ・ 患者に寄り添う現場スタッフとのコラボの必要性 ・ 病名は同じでも、症状が微妙に異なるケースへの対処 など 次回に続く

Advanced Analytics | Analytics | Artificial Intelligence | Data for Good | Data Visualization | Internet of Things | Machine Learning | SAS Culture
小林 泉 0
SAS社員としての誇りーミツバチ・森林・絶滅危惧種の保護や医療への貢献にAI/アナリティクスを活用

SASの一つの顔は、アナリティクスで営利目的の意思決定を支援 筆者は、SAS社員として、20年以上に渡りアナリティクスおよびAIで企業・組織を支援してきました。 金融機関における、リスク管理や債権回収の最適化 通信業における、顧客LTV最大化、ネットワーク最適化やマーケティング活動の最適化 製造業における、需要予測、在庫最適化、製造品質の向上や調達最適化 流通・小売業における、需要予測やサプライチェーン最適化 運輸業における、輸送最適化や料金最適化 ライフサイエンス・製薬企業における、業務の最適化 官公庁における、市民サービス向上のための不正検知 など、様々な業種・業務においてアナリティクスの適用によるお客様のビジネス課題の解決に携わってきました。営利目的(ここでは市民サービスの向上も含めることにします)の企業・組織におけるアナリティクスの活用目的は主に以下の3つに集約されます。 収益(売り上げ)の増大 コストの低減 リスク管理 アナリティクスは、いわゆる「データ分析」を手段とし、過去起きたことを把握して問題を定義し、次に将来を予測し、様々な選択肢の中から最適な予測に基づいて意思決定をしていくことになりますが、その過程の中で、起きてほしい事象を予測して促進したり、起きてほしくない事象を予測して防いだり、その予測のばらつきを管理したりということを行っていきます。 このような営利目的でのアナリティクスの活用はSASという会社が誕生した40年以上前から行われており、基本的な活用フレームワークは変わっていません。IT技術の進化によって、利用可能なデータの種類や大きさが、増えてきただけにすぎないと言えます。例えば、昨今のAIブームの代表格であるディープラーニングですが、ディープラーニングという処理方式の進化と、GPUという処理機械の進化によって、非構造化データをより良く構造化しているものであり、もちろんモデリング時のパラメータ推定値は何十億倍にはなっていますが、モデリングのための1データソースにすぎません。もう少しするとディープラーニングも使いやすくなり、他の手法同様、それを使いこなすあるいは手法を発展させることに時間を費やすフェーズから、(中身を気にせず)使いこなせてあたりまえの時代になるのではないでしょうか。 SASのもう一つの顔、そして、SAS社員としての誇り、Data for Goodへのアナリティクスの適用 前置きが長くなりましたが、SAS社員としてアナリティクスに携わってきた中で幸運だったのは、データの管理、統計解析、機械学習、AI技術と、それを生かすためのアプリケーション化、そのためのツール、学習方法や、ビジネス価値を創出するための方法論や無数の事例に日常的に囲まれていたことだと思います。それにより、それら手段や適用可能性そのものを学習したり模索することではなく、その先の「どんな価値創出を成すか?」「様々な問題がある中で優先順位の高い解くべき問題はなにか?」という観点に時間というリソースを費やすことができていることだと思います。そのような日常の仕事環境においては、アナリティクスの活用を営利目的だけではなく、非営利目的の社会課題の解決に役立てるというのは企業の社会的責任を果たす観点においても必然であり、Data for Goodの取り組みとしてSAS社がユニークに貢献できることであり、SAS社員として誇れるところだと考えています。 最終的に成果を左右するのは「データ」 そして、もう一つの真実に我々は常に直面します。クラウド・テクノロジー、機械学習、ディープラーニングなどの処理テクノロジーがどんなに進歩しようともアナリティクス/AIによって得られる成果を左右するのは「データ」です。どのようなデータから学習するかによって結果は決まってきます。 IoT技術で収集したセンサーデータは知りたい「モノ」の真実を表しているだろうか? 学習データに付与されたラベル情報は正確だろうか? 学習データは目的を達成するために必要な集合だろうか? そのデータは顧客の心理や従業員の心理をどこまで忠実に表しているだろうか? 特に、Data for Goodのチャレンジはまさにそのデータ収集からスタートします。ほとんどの場合、データは目的に対して収集する必要があります。そして、下記の取り組みのうち2つはまさに、我々一人一人が参加できる、市民によるデータサイエンス活動として、AI/アナリティクスの心臓部分であるデータをクラウドソーシングによって作り上げるプロジェクトです。 Data for Good: 人間社会に大きな影響を及ぼすミツバチの社会をより良くする 概要はこちらのプレスリリース「SAS、高度なアナリティクスと機械学習を通じて健康なミツバチの個体数を増大(日本語)」をご参照ください。 ミツバチは、人間の食糧に直接用いられる植物種全体の75%近くに関して受粉を行っていますが、ミツバチのコロニーの数は減少しており、人類の食糧供給の壊滅的な損失につながる可能性があります。この取り組みでは、IoT, 機械学習, AI技術, ビジュアライゼーションなどSAS のテクノロジーを活用し、ミツバチの個体数の保全/保護する様々なプロジェクトを推進しています。この取り組みは以下の3つのプロジェクトから成り立っています。 ミツバチの群れの健康を非侵襲的に監視 SASのIoT部門の研究者は、SAS Event Stream ProcessingおよびSAS Viyaソフトウェアで提供されているデジタル信号処理ツールと機械学習アルゴリズムを用いて、ミツバチの巣箱の状態をリアルタイムで非侵襲的に追跡するために、生物音響監視システムを開発しています。このシステムによって養蜂家は、コロニーの失敗につながりかねない巣箱の問題を効果的に理解し、予測できるようになります。 関連ページ:5 ways to measure

1 2