全般

Analytics | Learn SAS | Students & Educators
見習いデータサイエンティストが思うキャリアの選び方 【アナリティクスを活用するキャリア: SAS Japan】

アカデミア向けにアナリティクス・データサイエンスのキャリアを紹介するイベント「SAS アナリティクス・キャリアシンポジウム」において、SAS Institute Japan 株式会社 コンサルティングサービス統括本部のクラウス 舞恵瑠 氏が講演しました。本イベントは、「データサイエンティストになりたい」と考える学生が業務内容やキャリアをイメージできるようになることを目指し、2021年12月22日(水)に開催されました。前回の記事はこちら。 「大学院のときに学会に参加し、『もっと数学をやりたい』と気づいたときには、すでに就活が終わっていました…」と振り返るクラウス氏は、大学院ではオペレーションズ・リサーチを専攻していました。「やりたいことが分からないから」という理由でコンサルティングファームに就職し、システムの導入支援の業務につきましたが、在学中に参加した学会で芽生えた「数理的な手法で問題解決をしてみたい」という思いが強くなり、SAS Japanへの転職を決意します。 クラウス氏がSASで携わっている直近のプロジェクトのテーマは、「不良債権回収業務の回収益向上」というものです。通常、債務の返済を督促するときは電話をかけますが、人によっては訴訟に発展してしまう可能性もあります。そこで、返済状況や債務者のタイプによって督促の方法を変更したり、場合によっては債務を減額する提案をするほうが長期的には回収額が向上する場合があったりします。どのような督促・回収方法を取るのがよいのか、回収担当者の意思決定を支援するために、強化学習や最適化手法といったデータ分析を活用します。 「一般的なプロジェクトには業務フローがありますが、それぞれのフェーズにおいて必要となるスキルや知識は異なります」とクラウス氏は言います。プロジェクトのフェーズは①現状分析/効果検証、②要件定義、③設計/開発/テスト、④導入支援、⑤本番稼働、の5つに分けられます。それぞれのフェーズにおいて、①分析とドメイン知識、②コミュニケーション、③エンジニアリング、④コミュニケーション、⑤エンジニアリングのスキルが重要になります。 分析スキルのベースには線形代数、微分、統計などの数学的な力があり、それを活用するためにSASやPythonなどのツールやプログラミングのスキルがあります。業界やクライアントの業務に関する知識であるドメイン知識は、クラウス氏によると「非常に重要なもの」ですが、一方で「学生の間に身につけることは難しい」ものです。コミュニケーション・スキルは、クライアントの課題を明確にするためにヒアリングを実施し、また、プランや結果をクライアントにフィードバックするための資料を作成し、わかりやすく説明するためのスキルです。エンジニアリング・スキルは、参画するプロジェクトにもよりますが、GithubやSQLなどのテクノロジーを扱う技術が求められる傾向にあります。このうち、分析スキルは大学の授業などを通して、コミュニケーション・スキルはゼミなどを通して学生のうちに身につけることができそうです。 「これらのスキルをすべて伸ばしていくことはもちろん望ましいですが、私の現在の課題としては、より高度な分析スキルを身につけることです。そのためには、独学、勉強会、YouTubeなどさまざまな勉強法がありますが、一番大切なのは実務経験だと考えています」とクラウス氏は述べます。「学生にとっては実務経験を得ることは難しいですが、就職したあとに積極的に実務に携わり、経験を通してスキルを向上させていく意欲が大切です」と学生にエールを送りました。

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (6) – センサデータの品質を向上させる7つのポイント(後編)

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 記事の振り返り: 自覚症状が無いセンサデータの品質問題 これまで「自覚症状が無いセンサデータの品質問題」をテーマとし、「センサデータの品質を向上させる7つのポイント」について(前編)と(中編)の2回に分けてお話ししました。生産ラインのDXのために、センサデータを用いてデータ分析をしているのだが、思うような結果が得られていないケースが市場で発生していることをお伝えし、その原因の一つとして、分析対象となるセンサデータ自体の品質問題があることをお伝えしました。この問題は関係者が気付きにくく、対処方法も専門知識と経験が必要となります。 今回の後編では下記の⑥~⑦について御説明します。  図1. センサデータの品質を向上させる7つのポイント ⑥データレイクに蓄積すべきデータの選択(特徴量抽出) これまでの記事で、課題解決にマッチした高品質なセンサデータを収集することが重要だと述べてきましたが、他にも重要なポイントがあります。データレイクに蓄積すべきデータをどのように選択するのかが、昨今、課題となっています。  理由としては、AIモデル開発と更新のために、ある程度の生データ保存が必要となるからです。 この問題は、PoC段階では大きな問題になりません。PoCと称して大量にデータを取って専門の担当者が解析するからです。問題はPoC後の現場での運用です。 図2. 関連データ/センサ/特徴量の戦略的選択  それはなぜでしょうか? 各種センサが作り出すデータ量は非常に大きく、センサによっては毎分1 GB 以上のデータを生成してしまい、通信ネットワークの負荷の問題や、クラウド上でのデータ保存のコストといった現実的な問題が見えてくるためです。 例えば、図1の右側の表に示すように、サーモグラフィは動画像のため、1分間で1GB以上のデータを生成します。この場合、従量課金/ネットワークトラフィック減への対応が必要となります。温度センサ等のデータ量は、数個であれば小容量ですが、数百個もセンサを使用するケースですと、1分間に数MBにもなります。このようなデータをクラウドへ転送し続ける必要があるのでしょうか? また、高額なセンサを減らすために、できるだけセンサの数を絞りたいという要望も出てきます。これがいわゆるデータ選択(特徴量抽出)をどうたらいのかという課題の本質であり、データ分析上、特徴量の選定が重要だという理由とは異なります。では一体、どんなデータが本当に必要なのか、またデータ量を減らす時にどのような形でエッジコンピューティングを活用すべきなのでしょうか? この技術的な見解は、今後、ブログにて紹介させて頂きたいと思っておりますが、ITとOTの両方の視点から検討する必要があります。 キーワードとしてはプロ同士の意見交換です。 ⑦プロ同士の意見交換が鍵となる ここまで、センサデータの品質がデータ分析に与える影響について、データ分析企業の視点で述べてきましたが、どの注意点も専門知識と経験を要するものばかりです。つまり、成功の鍵は、プロ同士の意見交換だと言えます(図3)。もしくは「業界を超えたコラボレーションの必要性」、「ITとOTとの融合が鍵になる」と表現しても良いかもしれません。 特に現場の熟練者との協業は必須となります。現場の熟練者から伺いたい事としては、測定対象物の詳細、製造プロセスや作業工程、異常状態の詳細、また、どういうメカニズムで異常が起こるのか情報交換させて頂くことが重要です。そして、それがどれだけ困ることなのかをプロジェクトチーム内で意見交換をして頂くことが重要だと言えます。そして、センサデータ収集からデータ分析までを広く見渡した上で、AIを用いたセンサデータ分析システムを構築していくことが成功への近道だと筆者は考えています。難しく感じられる方もおられると思いますが、このプロ同士の意見交換に関しては、日本人エンジニアが得意とする高度な擦り合わせ文化が活かせると信じております。 図3. プロ同士の意見交換が大事  以上、センサデータの品質を向上させる7つのポイントを、3回に分けて紹介致しました。気になる点がございましたら、弊社までお問い合わせ下さい! 前回のブログ

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (5) – センサデータの品質を向上させる7つのポイント(中編)

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 記事の振り返り: 自覚症状が無いセンサデータの品質問題  これまで「自覚症状が無いセンサデータの品質問題」をテーマとし、前回は「センサデータの品質を向上させる7つのポイント(前編)」についてお話ししました。生産ラインのDXのために、センサデータを用いてデータ分析をしているのだが、思うような結果が得られていないケースが市場で発生していることをお伝えし、その原因の一つとして、分析対象となるセンサデータ自体の品質問題があることをお伝えしました。 この問題は関係者が気付きにくく、対処方法も専門知識と経験が必要となります。 そこで、「センサデータの品質を向上させる7つのポイント」について、今回の中編では下記の④~⑤まで御説明します。  図1. センサデータの品質を向上させる7つのポイント ④センサの設置方法  センサは種類に応じて必ずメーカが推奨する設置方法が決められています。図2は圧電型加速度センサの設置方法と注意点であり、加速度センサメーカから提供されている一般的な公開情報です。重要なのは、設置方法によっては必要なデータが得られないことです。例えば、計測可能な上限周波数は、プローブだと1 kHzが限界ですが、ネジ留めだと15 kHz近くまで測れます。これも筆者が経験した事例ですが、ユーザ様が自己流で両面テープを用いて加速度センサを貼り付けておられたために、振動が吸収されてしまい、正確な計測ができていなかったことがありました。これはさすがに、高度なデータ分析を実施する以前の問題でしたので、すぐに改善をお願いしました。 図2.  加速度センサの設置ミスによる振動データのロスト   ⑤データ収集装置の選定  データ収集装置自体の性能不足が問題になることがあります。これは盲点であり、自覚症状が出にくいものです。たとえ高精度なセンサを設置してデータ収集したとしても、適切なデータ収集装置を選定しなかったために、データの精度を低下させてしまうケースがあります。特に重要なのは、サンプリング周波数、分解能、同期計測の3つです(図3)。 図3. 適切な計測装置の使用が不可欠  サンプリング周波数に関しては、計測器の選定基準の一つとして必ずカタログ等に記載されており、また、近年はサンプリング周波数が不足しているデータ収集装置は稀なため、選定ミスの原因にはなりにくくなっています。しかし、分解能に関しては注意が必要です。例えば、加速度センサやマイクロフォンを用いた計測では、 24 bit分解能のデータ収集装置を使用するのが業界標準だが、16 bit分解能の装置を使用しているケースがあります(一般的なオシロスコープは8 bit分解能)。この場合、計測データに与える影響としては、波形再現性の悪化と微少な変化の取りこぼしが発生します。仮に機械学習を用いて異常検出をするとしたら、感度不足が起こる可能性があります(表1)。  表1. センサ計測ミスの原因とデータ分析に与える影響    極めて重要であるにもかかわらず、ほとんど意識されていないのが、同期計測です。各種センサデータ同士の時間的タイミングが取れていない場合は、厳密なデータ分析ができない場合があるからです。例えば、周期性のある回転機械や往復運動機械の異常検知を行う場合には、各種信号の立ち上がりタイミングや信号の発生サイクルが異常検知上、大きな意味を持つため、同期が取れていないデータでは異常検出が困難な場合あります(図4)。厳密には、計測装置の同期精度が、実施したいデータ分析用途に合っているかどうか判断する必要があります。高速動作をする精密機械の状態監視では、マイクロ秒レベルの同期精度が要求される場合もあり、一般的な工作機械ではミリ秒レベルで十分な場合があります。 図4.同期計測の重要性 データ収集装置の選定ミスにより、不具合の発見ができなかったという事例を、筆者は数件経験しています。例えば、高速印刷機の印刷ズレの原因分析に携わった時のことです。原因はベアリングのわずかな損傷で、それが原因で印刷ズレが発生していました。ですが、お客様のお持ちのデータ収集装置は、サンプリング周波数と分解能が低く、異常波形が検出できておりませんでした。そのため、筆者が持ち込んだデータ収集装置を使い原因分析は成功しました。加速度センサは最高のものでしたが、それを活かしきれるデータ収集装置の選定に問題があったという事例でした。 これまでの記事で、センサデータの品質を向上させる7つのポイントのうち5つを紹介してきました。 残り2つのポイントは、後編にて御説明します。 前回のブログ  次回に続く

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (4) – センサデータの品質を向上させる7つのポイント(前編)

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 前回の振り返り: 結果が出ないPoC(Proof of Concept:概念実証)  前回の記事では「自覚症状が無いセンサデータの品質問題」についてお話ししました。生産ラインのDXのために、センサデータを用いてデータ分析をしているのだが、思うような結果が得られていないというケースが市場で発生していることをお伝えし、その原因の一つとして、分析対象となるセンサデータ自体の品質問題があることをお伝えしました。 この問題は関係者の自覚症状もないため気付きにくく、対処方法も専門知識と経験が必要となります。 そこで、今回から前編/中編/後編の3回に分けて、「センサデータの品質を向上させる7つのポイント」について御説明します。 センサデータの品質を向上させる7つのポイント  現場では正確なセンサデータ収集(計測)を行っているつもりでも、気付かずに失敗しているケースが数多く存在していることに注意して頂きたいです。これは、計測ミスしたデータをいくら解析しても、良い結果は得られないからです。このような計測ミスを防ぐためのポイントは以下の7つだと言えます。 ※本記事では、上記の①~③まで御説明します。 ① 異常状態の発生メカニズムの理解(測定対象物の理解) この異常状態の発生メカニズムの理解は、測定対象物の理解を深めることだと言い換えることもできます。 いくつか例をあげてみます。ポンプのような回転機械の軸受けの不具合は異常振動として現れ、その結果として異音が発生します。また、音響機器はスピーカの取り付け不具合により、ビビリ音という異音が現れます。そして、プレス機のような往復運動機械の場合は、往復周期がぶれることにより、生産品の加工精度にバラツキが生じることがあります。さらに、射出成形機の場合は、材料の注入圧力の時間的変化にバラツキが生じた場合にうまく成形できない場合があります。 このように、測定対象物の異常状態が、なぜ起きるのかを物理的な観点から把握することが第1ステップとなります。 ところがこれが意外と難しいため、解決策としては、異常状態を把握している可能性の高い、現場の熟練オペレータなどからの情報収集が重要になります。 ② センサの選択(取得データの選定) よくあるミスとしては、センサの選択ミス、いわゆる取得データの選定ミスがあげられます。原因の一つは、上述の「①異常状態の発生メカニズム」が事前に理解できておらず、適切なセンサ選定ができなかったことに起因しています。例えば、回転機械の軸受けの不具合は異常振動として現れるため、異常検知のためには加速度センサを用いて振動データを取得することがベストだと言えます。また、音響機器のスピーカの取り付け不具合によるビビリ音の検出にはマイクロフォンを用いた音響計測が適切だと考えられます。 実はセンサ選定が不要な場合もあります。例えば、機械の制御信号が外部出力されているようであれば、そのままデータ収集することも可能です。 他にも原因があります。それは、システム構築を担当しているシステムインテグレータ(SIer)の得意分野が影響しているケースがあります。実際、SIerが得意としていないセンサは選定候補に上がってこないケースがあります。表1は、状態監視のために使用される代表的なセンサをまとめたものです。センサの種類によっては専門メーカや専門のSIerがいるものもあり、中には高性能な計測器が必要とされるセンサもあります。これは筆者が経験したことですが、製造装置の状態監視の際に、電流を使った異常検知の方が適切だと思われるケースがありました。ですがそこでは加速度センサが使用されていました。理由は業者が得意とするセンサ計測領域に偏りがあったことと、特に明確な理由がないまま、加速度センサが選択されていた状況でした。無論、生データには異常信号が弱く含まれており、データ分析をしても良い結果が得られていませんでした。そのため、筆者はセンサの変更を進言しました。 表1.状態監視に使用される代表的なセンサ ③ センサの取付け位置 センサの取付け位置も重要です。例として生産品の品質管理と製造装置の異常検知の例をあげてみます。機械はローラ機械である。図1左側の写真は、加速度センサを用いた軸受けのモニタリングであり、X、Y、Z軸に加速度センサが取り付けられている。この例は正しく設置されている例である。  医者の診断に例えれば、心臓の診断のために心音を聴こうとする医者は、どこに聴診器をあてるでしょうか? もちろん胸ですよね? 足に聴診器をあてて心音を聴こうとするお医者様がいたらかなり心配になりますよね? このような、あり得ない状況がセンサの取付け位置のミスとして起こっている場合があります。このような事態を防ぐには、「なぜそのセンサを設置するのですか?」とSIerに質問するなり、自問自答してみると良いと思います。また、「設置するセンサの数、取り付け方向はどうすべきか?」という問いに関しても明確な理由を持っておきたいですね。             図1.生産品の品質管理と製造装置の異常検知(ローラ機械の例) 以上、センサデータの品質を向上させる7つのポイントのうち3つを紹介しました。 次回は、④~⑤について御紹介します。 前回のブログ  次回に続く

Analytics | Data for Good | Learn SAS | Programming Tips
0
CData JDBC Driverを利用したSNS・ファイルストレージサービスとの連携のご紹介

SAS ViyaではCData JDBC Driverを使って下記のソーシャルメディア・ファイルストレージサービスにシームレスにかつ、素早く連結できます。 ・Facebook ・Google Analytics ・Google Drive ・Microsoft OneDrive ・Odata ・Twitter ・YouTube Analytics 本日はCData JDBCドライバーを使ってTwitterと連携し、「天気」に関するツイートを取得してみたいと思います。順番通り説明しますので、最後までお読みいただき、皆さんも是非ご活用ください。   1. Twitter API利用申請 Twitter Developer PlatformにてTwitter APIの利用申請を行います。申請にあたり、名前と住んでいる地域、利用目的などの情報を提供する必要がありますので、事前に用意しておいてください。また、利用申請の承認はTwitter側で数日かかる場合がありますのでご了承ください。 Twitter APIの利用申請が終わったら、申請完了のメールが届きます。 また、申請の検討が終わり、Twitter APIが利用できる状態になりましたら、「Account Application Approved」というメールが届きます。 2. CData Twitter JDBC Driverインストール インストールにはSASの契約とは別途、CData社との契約が必要ですが、30日間トライアルで使うことも可能ですので、ご紹介します。 まず、CData Twitter JDBC Driverインストールページにアクセスします。 次に、Downloadクリックします。 Download Trialをクリックします。 適切なOSを選択してDownloadをクリックします。今回はWindowsを選択しました。 ダウンロードされたTwitterJDBCDriver.exeファイルを開き、画面に表示されるステップに従ってインストールを完了します。   3. Connection String生成

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (3) – 自覚症状が無いセンサデータの品質問題

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 今回から、「自覚症状が無いセンサデータの品質問題」に関連した話題をお伝えしていきます。  結果が出ないPoC(Proof of Concept:概念実証)  SASは世界各国に支社を持ち、製造業DXの実現に向けた数多くのデータ分析案件を取り扱っています。 よく頂く御相談内容としては、生産品の品質管理と設備保全系に関連するデータ分析システムの導入検討です。(図1)    図1. 生産ライン向けDXとしてよくある御相談   ところが、PoCとしてセンサデータを用いてデータ分析をしているが、思うような結果が得られていないというケースが市場で発生しています。多くの方がデータ分析手法に問題があるのではないかと考え、データ分析のスペシャリストである弊社に御連絡を頂きます。たしかに分析手法の問題もあり、原因は様々ですが、意外と盲点になっているのが分析対象となるセンサデータ自体の品質問題です。  センサデータの品質問題とは何か?  データ分析はデータ収集から始まります。そして、そのデータの質が分析結果に影響を与えることは容易に想像できます。図2はセンサデータ分析システムの構築の流れを示しています。システム構築は、データ収集からスタートし、データ蓄積、そしてデータ分析という順番で実施され、手動でデータ分析の結果が出るようになった段階で自動化するという流れが一般的です。  図2. センサデータ分析システムの構築の流れ   図3は、センサデータの分析の際にAIの導入を意識して描いたものです。流れとしては、経営上の目標設定から始まり、データ取得、特徴量抽出/次元削減、そしてモデル作成へと進んでいきます。ここで皆様に質問させて頂きたいのは、どの工程が一番重要なのかということです。無論、どの工程も専門家の知見が必要であり、重要かつ難易度が高いのは当然ですが、最も重要なのは前半のデータ取得と特徴量抽出だと、あえて強調します。言い換えますと、モデル作成に使用されるセンサデータの品質(精度)が重要だということです。当然ではありますが、センサデータの質が悪い場合、データ分析(作成するモデルの精度)に影響が出てしまうためです。 医者の診断に例えれば、検査データが間違っていたら間違った診断を下してしまうのと一緒であり、センサデータの品質は極めて重要だと言えます。  図3. AIを用いたセンサデータ分析システムの開発の流れ 自覚症状が無いセンサデータの品質問題  この問題の恐ろしい点は、システム開発に携わっている関係者の皆様にとって自覚症状が表れない場合が多いことです。 そもそも、データ分析の結果が出ない原因が、上述のセンサデータの質に関係していることを、どうやって判断すれば良いのでしょうか? 当然、他の原因も考えられます。   先日、お医者様と健康診断の検査結果のお話をした際に気がついたのですが、お医者様は検査データの意味や限界、誤差要因をよく御存知のようでした。そして総合的に私の健康状態を判断しておられるようでした。思わず、その秘密を知りたいと思い質問してしまったのですが、お医者様の回答は「過去の事例と経験即かなぁ~~??」と、お答えいただきました。  ということで、次回以降、私の経験即に基づいたチェックポイントを御紹介していきます。  前回のブログ  次回に続く

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (2) - 生産ラインにおけるAIを用いた状態監視の種類

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。 そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 はい、今回は、「生産ラインにおけるAIを用いた状態監視の種類」について解説します。 図1に示した通り、種類としては4つに大別されます。 どれを実現したいのかで、取得すべきセンサデータの種類や、データ分析システムの構築難易度が変わってきます。 読者の皆様は、どれを実現したいとお考えでしょうか? 図1.生産ラインにおけるAIを用いた状態監視の種類は4つある 1つ目が異常検知です  これは生産品の品質異常や生産ラインの設備機械の異常を捉えるものであり、学術的には「教師なし学習」と呼ばれる手法を用います。この場合、異常時のデータを予め用意する必要がないため、不具合データの取得が困難な製造業の現場において有効となります。例えば、正常時の各種センサデータを基準とし、どれだけ正常状態から離れたかで、異常を検出する方法です。 2つ目は原因診断です これは異常発生後に、何が原因なのか特定するものであり、学術的には「教師あり学習」と呼ばれる手法を用います。この場合、異常時のデータを予め用意しておく必要があります。 原因診断が必要とされる理由としては、対処方法の検討をつけるためです。 製造装置であれば、点検箇所や分解すべき箇所を特定することにより、分解コストや部品交換コストを抑えることができます。 これは大型機械の場合、特に重要であり、この原因診断は「精密診断」とも呼ばれ、まさに職人技が要求される分野です。 3つ目が品質/寿命予測です これは各種データから、生産品の品質を予測したり、稼働中の設備や部品が、あとどれくらい使用できるか日数を予測するものです。 例えば、生産品の品質予測が可能になると、抜き取り検査の精度が向上し、ランダムにサンプル取得をするのではなく、品質上懸念がありそうなものをサンプルして効率良く評価できるようになります。 また、設備や部品の寿命予測が可能になれば、高額な部品をできるだけ長く使用することができますし、メンテナンス日程を戦略的に決めることも可能になります。 4つ目がパラメータ最適化です これは、期待した品質で生産するためには、どのような製造環境や材料構成が必要なのか、また、どのように製造装置を制御したらよいのか決定することができます。 図1に示したデータ活用の流れは、人間の健康診断と全く同じであり、1番から4番まで順番に実施する必要があり、飛び越えることはできません。 医療に例えますと、1番の「異常検知」は、正常時との変化を検出するものであり、いわば定期健康診断に相当するものです。 2番の「原因診断」は、定期健康診断で早期発見された異常を、さらに掘り下げて精密検査を行うものです。 3番の「品質/寿命予測」に関しては、医学でも同様であるが、これまでの長年にわたるデータが揃うことにより、治癒率予測が可能になります。 4番の「パラメータ最適化」は、健康で過ごすための予防方法だと言えます(図2)。そして、豊かな人生を過ごすために、どなたも4番の予防までを期待されておられると思います。 図2. 医療診断の流れと、生産ラインにおける品質管理/設備状態監視の流れはよく似ている 生産ラインでも同様です。最後の4番まで実現できれば、ビジネス上の費用対効果(ROI)は最大となります。 それには、分析に必要な各種データを準備する必要があり、その質も重要になります。 しかしながら現実問題として、いきなり4番から実現することはできないため、4番のパラメータ最適化の実現をゴールとしながら、1番から順番に実現していく必要があることを御理解ください。また、医学でも同様のことがいえるかと思いますが、生産ラインにおける状態監視対象物によっては、1番の異常検知が技術的な限界となり、2番以降に進めない場合もあります。 この見極めも重要となってきますが、この点は本ブログのテーマとして別途取り扱いたいと思います。 前回のブログ  次回に続く

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (1) - なぜ医者の診断に例えて学ぶと良いのか?

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。 そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。 いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) とOperational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 ------ はい、本日は 「なぜ医者の診断に例えて学ぶと良いのか?」 をテーマにお話しします。 近年、製造業DX、またはインダストリアルIoTと呼ばれるトレンドにより、AIを用いたセンサデータの分析が流行しています。 例えば、 ・ 製造装置の故障予測 (設備状態監視) ・ 生産品の不具合検出 (生産ラインの品質管理) が人気の用途です。 背景としては、熟練者のリタイヤを見越して、彼らが持つ暗黙知の形式知化が必要とされていることや、熟練者ですら見つけられない不具合を検出することで更なる品質向上を実現したいという考えが背景にあります。 そのため、データ分析のリーディングカンパニーである弊社には、世界各国において、センサデータの分析に関する御相談が数多くやってまいります。 それと同時に様々な誤解が生じていることがわかってまいりました。 ところが、数多くのお客様とお話をしていくと、多くの誤解や勘違いが存在することがわかってきました。 例えば、 分析アルゴリズムに関して、熱心に調査されているお客様、がおられます。 ごく普通のニーズだと思いますが、お話を伺うとこんな感じになることがあります。 監視対象物や起こっている異常状態が不明 データは持っておらず、機械学習等の分析手法を調査されているご様子であったり、監視対象となる設備機械や生産品が決まっていないというお客様です。 要は情報収集段階だということです。この場合、優秀なデータサイエンティストでも明確な回答はできず、お客様もなかなか納得されない状況が生まれます。 この状況は、医療で例えるなら、病気にもなっていないのに病院に行き、治療方法を熱心にお医者様に相談している状況と同じではないでしょうか? この例え話をさせて頂くと、すぐに状況を御納得頂けます。 データ分析をしても結果が出ない 2017年頃にIoTが流行った際に、まずはセンサで計測してみましょうということで「スタートアップキット」なるものが流行ったことがあります。 この名残で、分析しても結果がでなかったという苦い経験をされたお客様が数多くおられたようです。 投資もしましたし、会社組織としても困りますよね。そこで弊社に相談が来るわけです。 もちろん分析手法が原因である場合もありますが、実は問題の大半は、センサの選定ミスや、取付けミス、生データの取得方法などに関係しています。 この状況は、医療で例えるなら、心臓の病気を見つけるのに、聴診器を足に当てて心音を聞いているような状況が起こっているということです。また、ウィルス性の病気を聴診器で見つけようとしているようなケースも見うけられます。 これでは絶対に病気は見つけられませんよね? 医療に例えれば、あり得ない状況ではありますが、センサデータ分析の世界では、頻発している問題です。 正直、驚きではありますが事実です。 私はこのような状況を、非常にもったいないと感じています。 そのため、本ブログを通して、AIを用いたセンサデータ分析システムに関して生じている様々な誤解について、医者の診断に例えながら、わかりやすく御紹介していけたらと思っております。 その理由ですが、医療診断と、製造業系データの分析の流れは似ているからです(図1)。また、医療診断は、多くの皆様が実体験をお持ちですので、例え話を通して、言われてみればそうだなという感覚を持って頂きやすいのではないかと考えております。 図1. 医療診断の流れと、生産ラインでのデータ分析の流れはよく似ている 今回は、医者の診断に例えると、色々と見えてきますというお話をさせて頂きましたが、次回からは、よくある誤解に関して、次々に御紹介していきます。 テーマとしては、こんな感じの物を予定しています。 ・ 生産ラインにおけるAIを用いたデータ分析の種類について ・ 無症状であり、異常検出が甘くなる原因となる「センサの選択ミス(取得データの選定ミス)」 ・ 無症状であり、異常検出が甘くなる原因となる「センサの設置方法のミス」 ・ 無症状であり、異常検出が甘くなる原因となる「取得データの質が悪いケース」 ・ 患者に寄り添う現場スタッフとのコラボの必要性 ・ 病名は同じでも、症状が微妙に異なるケースへの対処 など 次回に続く

SAS Events | Students & Educators
0
#SAShackathonに参加してみよう~好奇心を形に~

データを使って新たな知見を見つけたいと思ったことはありませんか?実社会の問題を解決したいと思ったことはありませんか?そんなあなたにぴったりのイベントがあります! 昨年引き続きSASでは、SAS Hackathonというハッカソンイベントを開催します。過去のSASハッカソンについてはこちらをご参照ください。このイベントは開発者、学生、スタートアップ企業、SASの顧客・テクノロジーパートナーの皆様を対象としており、世界中から参加者を募集しています。 参加者は以下の分野の中から興味のある分野を選択し、テーマの設定、そのビジネス課題・社会問題の解決をチームで目指していただきます。チームは最低2人から最大10人までで、経験豊富なデータサイエンティストから初級者、パートナーやSASの専門家などなど幅広い方が、Microsoft AzureでSASとオープンソースを使用し世界規模でつながることができます。 また本イベントでは各チームにSAS Viyaを実行するクラウド環境や、メンタープログラムも用意されており、それぞれのチームにガイダンスやサポートが提供されます。SASコミュニティのHacker's Hubもご参考にどうぞ。   イベントスケジュール SASハッカソンのイベントスケジュールは以下のようになっています。 2021年12月1日〜2022年2月15日 登録期間 2022年1月26日 キックオフイベント 2022年1月5日~3月31日 デジタルラーニングポータルへのアクセスの有効化 2022年3月1日~3月31日 ハッカソン環境へのアクセス 2022年4月1日~4月7日 ビデオの録画とアップロード 2021年5月 ファイナリスト発表 2021年9月 受賞者イベント   ガイドライン SAS Hackathonは、開発者、学生、スタートアップ企業、SASの顧客、およびテクノロジーパートナーを対象としています。チームは、組織内の人々、組織とテクノロジパートナー、またはグループへの参加を検討している個人で構成できます。 チームが取り組む実際の課題(ビジネスまたは人道上の問題)の説明が必要です。 テクノロジーパートナーは、顧客や学生とチームを組むことができます。 スタートアップ企業は、顧客や学生とチームを組むことができます。 参加者である皆様の抱える問題をハッカソンで取り組うことが可能です。テクノロジーパートナーと協力する顧客は、一緒に新しい市場につながるパートナーシップに向けて取り組むこともできます。 学生と開発者はチームを形成できません。ただし、顧客、パートナー、またはスタートアップチームに参加すれば、参加できます。 ※参加をしたいがチームが見つかっていない学生や開発者は、次の登録手順の4において「Looking for a Team」を選択してください   登録手順 SAS Profileを作成します(既に持っている場合は2へ) SASハッカソンのイベントページにアクセス 画面上部中央にある「Register Now」をクリック 以下の3つのタイプから合うものを選んでクリック Team Leader 参加するチームが決定しておりチームリーダーである人 Team

Students & Educators
【冬休みに勉強しよう】アナリティクスの学習(2) Viya for Learners

前回の投稿 【冬休みに勉強しよう】アナリティクスの学習(1) Skill Builder for Students では、学生向けのリソース・ハブである Skill Builder for Students に登録し、e-Learningでの学習についてご紹介しました。取り上げた学習コースでは、SAS Visual Analytics をツールとして用いていましたが、このソフトウェアは SAS Viya と呼ばれるアナリティクス・プラットフォームで提供されます。 SAS Viya は次のような特徴を持っています。 アナリティクスによる課題解決に必要な「データの管理と準備」「分析による発見とモデル構築」「分析結果の実装」を一つのプラットフォームで提供 機械学習、ディープラーニング、テキスト解析、画像解析、予測、最適化などAI機能を網羅 グラフィカルな操作、SAS言語、Python、Rなどによるプログラミング、REST APIによる機能提供を実装し、アナリティクスへのアクセスをオープンにする これらの特徴は、企業や組織でアナリティクスを用いて価値を発揮するために必要なものでありますが、学生がデータ分析を学ぶ場面では必ずしも重要なものではないかもしれません。しかし、GUIやSAS言語、オープンソース言語など、それぞれの学生が得意とするスキル、今後のキャリアに役立つ技術を磨くプラットフォームとしては有用です。SAS Viya は商用またはアカデミア向けのライセンス提供がありますが、教育目的には無償の SAS Viya for Learners がSaaS形式で提供されています。 SAS Viya for Learners は、SAS Skill Builder for Students と同様に、大学ドメインのメールアドレスを登録したSASプロファイルをお持ちであれば、無料で登録・利用することができます。クラウドでの提供ですので、ソフトウェアをインストールする必要はなく、Webブラウザからアクセスするだけで利用できます。GUI操作での可視化(SAS Visual Analytics)や、機械学習モデル作成ツール(SAS Model Studio)、SASプログラミングについては、SAS Skill Builder for

1 2 3 4 7