Modernization is a term used to describe the necessary evolution of information technologies that organizations rely on to remain competitive in today’s constantly changing business world. New technologies – many designed to better leverage big data – challenge existing data infrastructures and business models. This forces enterprises to modernize their approach to data
Author
Modernization is a term used to describe the necessary evolution of information technologies that organizations rely on to remain competitive in today’s constantly changing business world. New technologies – many designed to better leverage big data – challenge existing data infrastructures and business models. This forces enterprises to modernize their approach to data
Master data management (MDM) is distinct from other data management disciplines due to its primary focus on giving the enterprise a single view of the master data that represents key business entities, such as parties, products, locations and assets. MDM achieves this by standardizing, matching and consolidating common data elements across traditional and big
Master data management (MDM) is distinct from other data management disciplines due to its primary focus on giving the enterprise a single view of the master data that represents key business entities, such as parties, products, locations and assets. MDM achieves this by standardizing, matching and consolidating common data elements across traditional and big
I've spent much of my career managing the quality of data after it was moved from its sources to a central location, such as an enterprise data warehouse. Nowadays not only do we have a lot more data – but a lot of it is in motion. One of the
In my previous post I discussed the practice of putting data quality processes as close to data sources as possible. Historically this meant data quality happened during data integration in preparation for loading quality data into an enterprise data warehouse (EDW) or a master data management (MDM) hub. Nowadays, however, there’s a lot of
Throughout my long career of building and implementing data quality processes, I've consistently been told that data quality could not be implemented within data sources, because doing so would disrupt production systems. Therefore, source data was often copied to a central location – a staging area – where it was cleansed, transformed, unduplicated, restructured
While it’s obvious that chickens hatch from eggs that were laid by other chickens, what’s less obvious is which came first – the chicken or the egg? This classic conundrum has long puzzled non-scientists and scientists alike. There are almost as many people on Team Chicken as there are on Team
Many data quality issues are a result of the distance separating data from the real-world object or entity it attempts to describe. This is the case with master data, which describes parties, products, locations and assets. Customer (one of the roles within party) master data quality issues are rife with examples, especially
Data quality has always been relative and variable, meaning data quality is relative to a particular business use and can vary by user. Data of sufficient quality for one business use may be insufficient for other business uses, and data considered good by one user may be considered bad by others.
In my previous post, I discussed the characteristics of a strong data strategy, the first of which was that a formal, well-defined strategy exists within your organization. This post discusses how often (and why) your organization’s data strategy needs to be updated. While strategy encompasses and sets the overall direction for
With data now impacting nearly every business activity, there should no longer be any doubt that data needs to be managed as a strategic corporate asset. This post examines the top five characteristics of a strong data strategy. Existence As I previously blogged, in today’s fast-moving business world now often takes priority
In this two-part series, which posts as the calendar turns to a new year, I revisit the top data management topics of 2015 (Part 1) and then try to predict a few of the data management trends of 2016 (Part 2). Data management in 2016 The Internet of Things (IoT) made significant
In this two-part series, which posts as the calendar prepares to turn 2015 into 2016, I revisit the top data management topics of 2015 (Part 1) and then try to predict a few of the data management trends of 2016 (Part 2). Data management in 2015 Big data continued to make
Time. It flies. It does so whether or not you’re having fun or otherwise putting it to good use. To know where it flies, you’d need to watch. But most of us can’t make the time to watch. How we use time is important since it’s the one resource we
Learn the top 5 reasons for managing data where it lives – whether it's in database or in memory, in the cloud or in-stream.
The Internet of Things (IoT) has become the new It Girl of the IT world. Of course her big brother big data continues to generate big buzz. My sis from another miss Tamara Dull has blogged about the relationship between big data and IoT, positing big data is a subset of IoT on
Jim Harris explains why it's especially important to assess the quality of metadata when it comes to big data.
Jim Harris discusses perspectives on the question of how much quality big data really needs.
Jim Harris addresses some of the most common questions and challenges big data poses for data quality.
Integrating big data into existing data management processes and programs has become something of a siren call for organizations on the odyssey to become 21st century data-driven enterprises. To help save some lost time, this post offers a few tips for successful big data integration.
There is a time and a place for everything, but the time and place for data quality (DQ) in data integration (DI) efforts always seems like a thing everyone’s not quite sure about. I have previously blogged about the dangers of waiting until the middle of DI to consider, or become forced
The intersection of data governance and analytics doesn’t seem to get discussed as often as its intersection with data management, where data governance provides the guiding principles and context-specific policies that frame the processes and procedures of data management. The reason for this is not, as some may want to
Yes. But since this post needs to be more than a one-word answer to its title, allow me to elaborate. Data governance (DG) enters into the discussion of all enterprise information initiatives. Whether or not DG should be the opening salvo of these discussions is akin to asking whether the
Jim Harris says event stream processing determines if big data is eventful and relevant enough to process and store.
In my previous post, I discussed the similarities, differences and overlap between event stream processing (ESP) and real-time processing (RTP). In this post, I want to highlight three things that need to get real. In other words, three things that should be enhanced with real-time capabilities, whether it’s ESP, RTP or
Event stream processing (ESP) and real-time processing (RTP) so often come up in the same conversation that it begs the question if they are one and the same. The short answer is yes and/or no. But since I don’t need the other kind of ESP to know that you won’t
In my previous post I used junk drawers as an example of the downside of including more data in our analytics just in case it helps us discover more insights only to end up with more flotsam than findings. In this post I want to float some thoughts about a two-word concept
In the era of big data, we collect, prepare, manage, and analyze a lot of data that is supposed to provide us with a better picture of our customers, partners, products, and services. These vast data murals are impressive to behold, but in painting such a broad canvas, these pictures
In the 1988 film Beetlejuice, the title character, hilariously portrayed by Michael Keaton, is a bio exorcist (a ghost capable of scaring the living) hired by a recently deceased couple in an attempt to scare off the new owners of their house. Beetlejuice is summoned by saying his name three times. (Beetlejuice. Beetlejuice. Beetlejuice.) Nowadays