Artificial Intelligence

Discover how AI is used today and how it will augment human experience in the future

Analytics | Artificial Intelligence
Andreas Becks 0
Dem Algorithmus in die Blackbox schauen: KI-Entscheidungen erklärbar machen

Im vorangegangenen Blog habe ich die „vier Säulen des Vertrauens“ für automatisierte Entscheidungen vorgestellt. Dieser hat gezeigt: Erklärbarkeit und Transparenz beziehen sich auf den gesamten analytischen Prozess. Wie sieht es aber mit der „Blackbox“ der maschinellen Lernalgorithmen aus? Auch dort muss Transparenz durch eine analytische Plattform gewährleistet sein. Die gute

Artificial Intelligence | Internet of Things | Machine Learning
Christian Goßler 0
AC&DC und Sherlock im Internet of True Detectives (IoT9)

Lenin schaut übellaunig wie ein Bolschewik: „Sherlock? Der hat mit leistungsfähiger künstlicher Intelligenz so wenig zu tun wie mit echter Detektivarbeit! Wir brauchen weder Sherlock noch seinen Doktor!“ Lenin hatte mich zum Challenger Workshop eingeladen. Ein Berater der Accelerator Change & Disruption Consultancy (AC&DC) bat nach kurzem Impulsvortrag (Change! Disruption!)

Analytics | Artificial Intelligence
Jeanne (Hyunjin) Byun 0
공공 기관을 위한 효과적인 인공지능 전략

2019년에도 인공지능(AI)은 여전히 모든 기관 및 조직들에게 큰 화두일 것으로 보입니다. 인공지능 기술을 통해 기관은 대량의 데이터를 빠르게 분석하고 반복적인 업무 프로세스를 자동화하며, 투명성을 높임으로써 전반적인 운영 효율을 개선할 수 있습니다. 이러한 혁신은 이제 더 이상 첨단 IT 기업들만의 성공 사례가 아닙니다. 새해를 맞이하여 공공 기관이 효과적으로 AI 전략을 구현하기

Analytics | Artificial Intelligence
Andreas Becks 0
Nachvollziehbarkeit und Vertrauen: Oberste Prämisse für ethische KI-Entscheidungen

Im ersten Teil meines Blogs habe ich argumentiert, dass die Beschäftigung mit künstlicher Intelligenz (KI) und Ethik keine rein philosophische oder gesellschaftspolitische Fragestellung ist. Eines ist klar: Die Ethik-Debatten werden in diesem Jahr weitergehen und sich stärker an den realistischen Möglichkeiten und Risiken von KI orientieren. Unternehmen und Organisationen, die

Advanced Analytics | Analytics | Artificial Intelligence
Cameron McLauchlin 0
How are AI and advanced analytics transforming health and life sciences?

The potential for artificial intelligence (AI) and the Internet of Things (IoT) to transform the way health care and therapies are delivered is tremendous. It’s not surprising that the health care and life sciences industries are being flooded with information about how these new technologies will change everything. While it’s

Analytics | Artificial Intelligence | Students & Educators
Anita Lakhotia 0
Myth-busting: was macht ein Data Scientist den ganzen Tag?

Diese Frage bekomme ich von Nicht-Data-Scientists immer häufiger gestellt. Und es ranken sich viele Meinungen und Mythen um diese Expertengruppe. Genau aus diesem Grund habe ich mich mit Simon Greiner, einem angehenden Data Scientist und erfahrenen IT-Berater, unterhalten. Ein Mythos über Data Scientists: sie lesen keine Bücher mehr. Stimmt nicht!

Analytics | Artificial Intelligence | Data Visualization | Machine Learning | Programming Tips
Melanie Carey 0
How SAS Visual Analytics' automated analysis takes customer care to the next level - Part 3

In the second of three posts on using automated analysis with SAS Visual Analytics, we used the automated analysis object to get a better understanding of our variable of interest, X-Sell and Up-sell Flag, and how it is influenced by other variables in our dataset. In this third and final

Advanced Analytics | Artificial Intelligence | Internet of Things
Christian Goßler 0
Bolschewistische Rotationsbeschleunigung im Internet of Tumble (IoT8)

„Für mich heißt Internet of Things, dass hier alles rotiert wie in einem Wäschetümmler und es weder Durcheinander noch Stillstand gibt.“ Frau Dönmek hatte Lenin und mich am Werkstor in Cedorf abgeholt und uns gleich in die Halle zu ihrer Anlage geführt: „Wir arbeiten an der Kapazitätsgrenze. Was wir wegen

Analytics | Artificial Intelligence | Data Visualization | Machine Learning | Programming Tips
Melanie Carey 0
How SAS Visual Analytics' automated analysis takes customer care to the next level - Part 2

In the first of three posts on using automated analysis with SAS Visual Analytics, we explored a typical visualization designed to give telco customer care workers guidance on customers most receptive to upgrade their plans. While the analysis provided some insight, it lacked analytical depth -- and that increases the risk of  wasting time, energy and

Analytics | Artificial Intelligence | Data Visualization | Machine Learning | Programming Tips
Melanie Carey 0
How SAS Visual Analytics' automated analysis takes customer care to the next level - Part 1

You're the operations director for a major telco's contact center. Your customer-care workers enjoy solving problems. Turning irate callers into fans makes their day. They also hate flying blind. They've been begging you for deeper insight into customer data to better serve their callers. They want to know which customers

Advanced Analytics | Analytics | Artificial Intelligence
Pedro Felipe Cerón 0
Los gobiernos digitales transforman la forma de trabajar

La transformación digital y la modernización de los sistemas siguen siendo dos tendencias que constituyen prioridades de misión crítica para el sector público en 2019, según la consultora internacional Gartner. En ese camino, y para este nuevo año que inició, la aplicación de la Analítica Avanzada y de la Inteligencia

Artificial Intelligence | Internet of Things
SAS Korea 0
지능형사물인터넷(AIoT)은 유틸리티 산업을 어떻게 발전시킬까요?

지능형사물인터넷(AIoT)에 대해 들어본 적 있으신가요? 지능형사물인터넷은 사물인터넷(IoT)을 통해 연결된 스마트 기기 데이터에 인공지능(AI)을 적용하는 것입니다. AIoT가 활성화되면 연결된 기기(커넥팅 디바이스)에서 수집된 정보를 기반으로 머신러닝 학습과 분석은 물론 서비스 제공까지 동시에 이루어질 수 있을 텐데요. 학습과 자동화를 기반으로 사람의 업무 처리 영역을 돕는 인공지능 기술은 경험 학습, 새 입력값(Input)을 통한 조정, 별도의 수동 조작이

Advanced Analytics | Artificial Intelligence | Internet of Things
SAS Korea 0
디지털 트랜스포메이션의 필수 요소, 인공지능(AI)과 사물인터넷(IoT)

햄버거와 감자튀김, 떡볶이와 순대, 와인과 치즈를 보통 찰떡궁합이라고 하죠. 기업과 조직의 디지털 트랜스포메이션(Digital Transformation) 추진에 있어 인공지능(AI)과 사물인터넷(IoT)은 뗄래야 뗄 수 없는 찰떡궁합입니다.  인공지능과 사물인터넷, 지능형사물인터넷(AIoT) 기술은 서로 연관되어 있습니다. 사람의 인체에 비유한다면 사물인터넷 없는 인공지능은 데이터 수집 능력이 없는 두뇌와도 같고, 반대로 인공지능 없는 사물인터넷은 데이터에서 인텔리전스를 추출할 수 없는

Advanced Analytics | Analytics | Artificial Intelligence
José Mutis O. 0
Tres tendencias que impactarán la industria del consumo masivo en 2019

La implacable búsqueda del consumidor para satisfacer sus necesidades impulsa cada cambio que vemos en el ámbito del consumo masivo. La desaparición de la empresa Toys R Us en Estados Unidos, el récord de la plataforma Alibaba consiguiendo ventas por US$25.000 millones diarios en 2018, la promesa de JD.com de

Analytics | Artificial Intelligence | Internet of Things | Machine Learning
José Mutis O. 0
El análisis predictivo: impactando los negocios y sus procesos de transformación digital

La tecnología y la sociedad están evolucionando en un entorno digital que exige cambios en el modelo de negocio, la infraestructura y la cultura de una organización. Sin embargo, uno de los mayores retos a los que se están enfrentando las empresas en este momento se basa en el desconocimiento

Analytics | Artificial Intelligence
Michael Rabin 0
Das moderne Aktuariat: Warum KI und Tempo künftig Umsatz bringt

Die Versicherungsbranche (Aktuariat) ist ein langer, ruhiger Fluss, auf dem träge Dampfer kreuzen. Sagen die einen. Sie ist ein Haifischbecken, das nur die stärksten überleben. Sagen die anderen. Recht haben sie beide. Denn zum einen ist der Versicherungsmarkt ganz klar ein reifer Markt, in dem der Handlungsspielraum für die einzelnen

Artificial Intelligence | Fraud & Security Intelligence | Machine Learning
SAS Korea 0
사기 탐지부터 방지까지, 인공지능과 머신러닝이 해결할 수 있는 범위는?

인공지능(AI)과 머신러닝이 최근 화두로 떠오르며 이를 둘러싼 여러 오해가 생기고 있습니다. 특히 사기 분야에 대해서는 더 많은 오해를 하고 있는데요. 인공지능과 머신러닝이 정교한 기술과 방대한 양의 데이터를 사용해 도움을 주고 있다는 사실, 알고 계신가요? 인공지능과 머신러닝은 기술은 우리의 일상적인 업무에서 생각해보지 못했던 질문을 던집니다. 이러한 질문들은 보편적으로 알려져 있지 않은 사실이기

Analytics | Artificial Intelligence | Fraud & Security Intelligence
Jeanne (Hyunjin) Byun 0
사이버 보안 향상을 돕는 인공지능 분석 활용 3단계!

인공지능(AI)은 지난 한 해 동안 미국 연방 정부에서 가장 주목 받은 키워드 중 하나였습니다. 지난 9월, 백악관은 미국의 연방정부가 15년 만에 연방 차원의 체계적 ‘국가 사이버보안 전략’ 공개하며 사이버보안 강화와 기술 발전을 위한 청사진을 제시하기도 했는데요. 발표된 전략 보고서에는 미국 내 네트워크·시스템·데이터 안보 강화, 강화된 사이버보안을 환경에서 디지털경제와 기술혁신 증진, 미국의

Artificial Intelligence
Makoto Unemi (畝見 真) 0
SAS Viya:RNNでsin波を予測してみた

PythonからSAS Viyaの機能を利用するための基本パッケージであるSWATと、よりハイレベルなPython向けAPIパッケージであるDLPyを使用して、Jupyter NotebookからPythonでSAS Viyaのディープラーニング機能を使用した時系列予測を試してみました。  大まかな処理の流れは以下の通りです。 1.必要なパッケージ(ライブラリ)のインポート 2.Sin波データの生成 3.セッションの作成 4.RNN向け時系列データセットの作成 5.モデル構造の定義 6.モデル生成(学習) 7.予測  1.必要なパッケージ(ライブラリ)のインポート swatやdlpyなど、必要なパッケージをインポートします。 import numpy as np import pandas as pd import matplotlib.pyplot as plt import swat.cas.datamsghandlers as dmh from swat import * import dlpy from dlpy import Sequential from dlpy.layers import * from dlpy.model import Optimizer, AdamSolver, Sequence

Artificial Intelligence | Customer Intelligence
Gerhard Svolba 0
Real-Time Scoring und Customer Behavior Analysis: Das konnte Frau Cerny schon in den 1970er Jahren!

Nicht erst im Zeitalter von künstlicher Intelligenz (KI) und Real-Time Decision Engines werden historische und aktuelle Verhaltensweisen von Kunden analysiert. Die Praxis, anhand dieser Informationen Entscheidungen zu treffen und sie in Echtzeit auf die Kundeninteraktion anzuwenden, gab es bereits in den 1970er-Jahren. Frau Cerny betrieb den Lebensmittelladen im Wohnhaus meiner

1 23 24 25 26 27 30

Back to Top