Tag: SASPy

Advanced Analytics | Cloud
Lucas de Paula 0
Running CMS Risk Adjustment Models via API with SAS Analytics Pro (Viya) on Azure

In this third article, we will introduce an alternative approach that surfaces the CMS-HCC Risk Adjustment Model execution through SASPy integration to a Flask application. We will demonstrate how this integration allows a user to score an individual patient/member on-demand, using inputs to an interactive web form to execute the model score code, surfacing the resulting score to the user.

Programming Tips
Ajmal Farzam 0
Using Python to run jobs in your SAS Grid

One of the features of SAS Grid Manager (and SAS Grid Manager for Platform) introduced in SAS 9.4 M6 is the capability for the grid provider software to handle open-source workloads in addition to traditional SAS jobs. In this post, we’ll take a look at the steps required to get your SAS Grid Manager environment set up to utilize this functionality, and we’ll demonstrate the process of submitting Python code for execution in the SAS Grid.

Advanced Analytics | Analytics | Learn SAS | Machine Learning | Programming Tips
Nelson Grajales 0
Machine learning with SASPy: Exploring and preparing your data (part 1)

SASPy is a powerful Python library that interfaces with SAS and can help with your machine-learning solutions. SASPy was created for Python programmers to leverage the power of SAS within their Python scripts. If you are not familiar with SASPy, see the following resources: Introducing SASPy: Use Python code to

Advanced Analytics | Machine Learning | SAS Events
SAS Global Forum 2019 論文紹介シリーズ 第2回「PythonからSAS9を活用するコーディング事例紹介」

前回に引き続き、SAS Global Forum 2019で公開された論文をご紹介します。今回は、SASユーザを含め、SAS言語とオープンソース言語の機能を共に活用することで、様々なビジネス課題に対応できるようなコーディング事例をいくつかピックアップします。 1.Deep Learning with SAS® and Python: A Comparative Study ご存知の通り、SASはディープランニングに関する専門性の高いかつ豊富な機能と製品を提供しています。この論文では、SASとPythonに対し、それぞれ違うデータタイプ(例えば:構造化と非構造化、イメージ、テキスト、シーケンシャルデータ等々)を使ったディープラーニングのモデリングを比較する論文となります。主にSAS環境でのディープランニングフレームワーク、そして、SASとPython言語のディープランニングプログラミングの違いによって、それぞれのメリットとデメリットの紹介となります。 2.Utilization of Python in clinical study by SASPy Pythonは近年最も使われているプログラミング言語になってきました。そして現在、機械学習とAI領域でもよく使われています。Pythonの一番のアドバンテージはその豊かなライブラリを通じ、多種多様な分析をインプリメントできることです。SASは臨床研究領域で最も強力な分析製品でありながら、さらにPythonを使うことによって、そのレポーティング機能、例えば、データ管理、データ可視化を拡張できます。これもSASプログラマーユーザのキャリアに対し、潜在的なメリットです。その様な背景において、SASPyはその可能性を実現します。SASPyはPythonコードの中でSASのセッションをスタートできるPythonパッケージライブラリとなります。この論文では、基本的なSASPyの使用方法とSASのデータセットを処理するヒントについて紹介しています。そして、Pythonを使って、臨床研究で使えそうなレポーティング機能について検討します。 3.Everything is better with friends: Executing SAS® code in Python scripts with SASPy SASPyはSASがPythonプログラミング用に開発したモジュールで、SASシステムに代わるインタフェースを提供しています。SASPyを通じて、SASプロシージャはPythonスクリプトと構文で実行することができ、かつ、SASデータセットとそれに相当するPythonデータフレームの間にデータを転送することも可能です。それにより、SASプログラマーはPythonの柔軟性を利用してフロー制御を行うことができ、PythonプログラマーはSAS分析をスクリプトに組み込むこともできます。この論文では、Pythonスクリプト内で通常のSASコードとSASPyの両方を使用した一般的なデータ分析タスクの例を幾つか紹介し、それぞれの重要なトレードオフを強調し、多種プログラミング言語ユーザになれることの価値を強調しています。SAS University Edition用のJupyterLabインタフェースを使用し、それらの例を再現するための説明も含まれています。それらのSASとPythonのインテグレーション例はJupyter Notebookとしてダウンロードできます。 ダウンロード:https://github.com/saspy-bffs/sgf-2019-how 4.Modeling with Deep Recurrent Architectures: A Case Study of

Analytics
SAS Global Forum 2019 論文紹介シリーズ 第1回「OSS言語から活用できるオープンなSASプラットフォーム」

例年と同様に、SAS Instituteはグローバル各国でフォーラムを開催しました。日本ではSAS Forum Japanと題して6月11日に東京の六本木で開催され、また、アメリカSAS本社はダラスでSAS Global Forum 2019を開催(4/28~5/1)し、その中では多数の論文が発表されています。本シリーズでは、これらの論文の中から、OSSとSASプラットフォーム製品のユースケース、OSSコーディング開発・運用事例、クラウドアーキテクチャの設計と運用等々の注目された内容を選別した上で、4回に分けて紹介していきます。 第1回「OSS言語から活用できるオープンなSASプラットフォーム」 近年、OSS(オープンソースソフトウェア)プログラミング言語が数多くのデータサイエンティストや企業によって利用され、分析モデルが開発されています。PythonやR、Luaなどデータサイエンティストや開発者たちに好かれたプログラミング言語はアナリティクス業界に革新をもたらしました。SASはそれらのOSSユーザと企業の要望に応じ、従来のSASユーザとOSSプログラミングユーザーたちが共同作業、かつ連携できるようなプラットフォームを提供しています。 今回は、OSSユーザがどのような方法を利用し、SASプラットフォーム上で自由自在なデータ分析を行えるのかをテーマとし、SAS Global Forumで公開した論文をご紹介します。 1.Open Visualization with SAS® Viya® and Python この論文では、オープンソース言語の一つであるPythonに関し、SAS ViyaのSWAT(Scripting Wrapper for Analytics Transfer)を通じて、メインにオープンソースのグラフィックテクノロジー、特にPythonのMatplotライブラリ、そして現在主流となっているD3の可視化フレームワークとのインテグレーション技術について紹介しています。本文で用いた例は、統計プログラミングのサンプルを使って、Jupyter NotebookからSAS Viyaの機能を呼び出し、最終的に、mpld3で作られた静的なグラフを動的グラフに変更した例となります。 2.SWAT’s it all about? SAS Viya® for Python Users SASは2016の7月にPythonライブラリSWATをリリースしました。それにより、PythonユーザはSASのCASに接続して、SAS Viyaの各種機能を使えるようになりました。SWATを利用することで、SAS言語バックグラウンドを持っていないユーザには、SAS言語ユーザと同じくCASとSAS Viyaの各種機能を使用できるようになります。この論文では、Python SWATを通じて、CASセッションへ接続し、PythonからCASへデータをロードし、さらにCASアクションで実行して分析する一連作業をデモンストレーションの形で紹介します。使用するデータは、SASほかのアプリケーション、例えばVisual Analyticsなどでも利用できる様子を紹介します。 3.Deploying Models Using SAS® and Open Source 近来、機械学習と人工知能の議論はほとんどの時間がモデル開発の議論に費やされています。しかし、モデルによって得られる洞察をどのように効率的にビジネス価値創出に適用するかに関してはほとんど議論されていません。この論文では、モデルの構築に応じ、Docker、Flask、Jenkins、Jupyter、Pythonなどのオープンソースプロジェクトとの組み合わせで、SASを使用してモデルを展開するためのDevOpsプリンシパルの使用例を紹介します。例に使われている関連アプリケーションはグローバルなユーザベースを持つ資産上のレコメンド・エンジンとなります。この使用例は、セキュリティ、待ち時間、スケーラビリティ、再現性に直面する必要があることをめぐってディスカッションします。最後に、その解決策となるソリューションとその課題となる部分を含めて説明します。 4.SAS®