Tag: SAS Visual Analytics

Advanced Analytics | Analytics | Data Visualization
Makoto Unemi (畝見 真) 0
セルフサービスBIの進化系、拡張アナリティクスの決定版SAS Visual Analytics 8.4 on SAS Viya拡張ポイント

SAS Visual Analytics on SAS Viya(以降VA)の最新版8.4に搭載されている新機能の中から、以下5つの機能に関してダイジェストでご紹介します。 1.AIストーリーテラー機能 2.レポート編集&表示切替の利便性向上 3.閲覧時レポートカスタマイズ&制御 4.分析用ビジュアル候補提示 5.カスタムグループ作成の容易化 6.Visual Analytics SDK 1.AIストーリーテラー(自動分析&解説)機能 VA8.3から搭載されていた機能やUIが拡張されています。 AIストーリーテラー(自動分析&解説)機能では、分析対象の変数(ターゲット)を指定するだけで、その変数に影響を与えているその他の変数の特定や、変数ごとにどのような条件の組み合わせがターゲット変数に依存しているのかを「文章(条件文)」で表現して教えてくれます。 この例で使用するデータ「HMEQJ」は、ローンの審査を題材にしたもので、顧客ごとに1行の横持ちのデータです。このデータ内にある「延滞フラグ」が予測対象の項目(ターゲット変数)で、0(延滞なし)、1(延滞あり)の値が含まれています。 データリスト内の「延滞フラグ」を右クリックし、「説明」>「現在のページで説明」を選ぶだけで、「延滞フラグ」をターゲット変数に、その他の変数の組み合わせを説明変数とした複数の決定木(ディシジョンツリー)が実行され、 以下のような結果が表示され、見つけ出された有用な洞察を説明してくれます。 分析結果画面内説明: ① 予測対象値(0:延滞なし、1:延滞あり)の切り替えが可能です。この例では、「1:延滞あり」を選択し、「延滞する」顧客に関して分析しています。 ② 全体サマリーとして、すべての顧客の内、延滞実績のある顧客は19.95%(5,960件中の1,189件)であることが示されています。 ③ 「延滞する」ことに関して影響を与えている変数の重要度を視覚的に確認することができます。最も影響度の高い変数(今回は「資産に対する負債の割合」)の重要度を1として、1を基準値にした相対重要度が算出され、横棒グラフで表示されます。従来版に比べて、変数ごとの影響度合いの違いを明確に捉えることができます。 ④ 「高」タブには、「延滞する」可能性が高いトップ3のグループ(条件の組み合わせ)が文章で示され、「低」タブには、「延滞する」可能性が低いトップ3のグループ(条件の組み合わせ)が文章で示されます。この例では、③で「資産価値」が選択され、「資産価値」に基づき、延滞する可能性の高い/低いグループのトップ3が表示され、「資産価値」に関する条件部分がハイライトしています。 ⑤ この例では、③で「資産価値」が選択され、これに応じて「0:延滞なし、1:延滞あり」別の顧客の分布状況がヒストグラムで表示されています。選択された変数が数値属性の場合は、ヒストグラムで、カテゴリ属性の場合は積み上げ棒グラフで表示されます。チャートの下端では、チャートから読み取れる内容を文章で解説しています。 以下は、カテゴリ属性の変数を選択した場合の表示例です。 以上のように、分析スキルレベルの高くないビジネスユーザーでも、簡単かつ容易に、そして分かり易くデータから有効な知見を得ることができます。 ※AIストーリーテラー機能に関しては、SAS Viya特設サイトのビジュアライゼーションセクションで動画でもご覧いただけます。 2.レポート編集&表示切替の利便性向上 従来のVAでは、編集モードで作成したレポートを表示モードで確認する際には、メニューから「レポートを開く」を選択し、レポートが表示されるのを少し待つ必要がありました。また、レポート表示モードから編集モードに戻るにもメニューから「編集」を選択する必要がありました。 VA8.4では、編集モードと表示モード切替の利便性が改善され、画面左上のペンシルアイコンをクリックするだけで、編集画面<->表示画面間を瞬時に切り替えられるので作業効率が向上します。 また、ご覧の通り、編集画面と表示画面のレイアウトも統一されています。 3.閲覧時レポートカスタマイズ&制御 一般的にBIツールでは、対象ユーザーを3つの層(管理者、レポート作成者(デザイナ)、レポート閲覧者(コンシューマ))に分類し、それぞれに最適なインターフェースを提供しています。しかし、レポート閲覧者の中には、「基本的には誰かが作成したレポートを見るだけでいいんだけど、自分好みに変更できたらもっといいのにな…」という声も多くあります。このレポートカスタマイズ者層に答えられないために、彼らは、レポートを開き、そのデータをダウンロードし、Excelに取り込んで好みのレポートを作成しようとするのです。 VA8.4では、レポートカスタマイズ者層向けに、作成済みレポートを開いて閲覧中に、簡単操作で好みに合うようにレポートをカスタマイズすることができるようになりました。 以下は、レポート閲覧中に「円グラフ」を他のチャートタイプに変更するメニューが表示されている例です。 また、レポート作成者は、レポートカスタマイズ者向けに、カスタマイズ可能な機能範囲を3段階で制御することが可能です。 これで、レポート作成者の負担も軽減され、レポート閲覧者の痒いところに手が届きそうですね。 4.分析用ビジュアル候補提示 レポート作成の元となるデータソースを選択すると、そのデータソース内の項目に基づき、「こんな分析が有効じゃないの…」と、分析画面の候補を自動的に提示してくれる機能です。 画面左端から電球マークの「候補」アイコンをクリックすると、分析候補がいくつか表示され、提示された分析画面をドラッグ操作でレポートに挿入することができます。 より素早く、効果的な情報を含むレポートを作成することができそうですね。これも一つの自動分析機能です。 5.カスタムグループ作成の容易化 従来版のVAでは、カスタムグループを作成する際には、カスタムグループ作成専用の画面内で、グループに含める要素の選択と、グループ名称を設定し、OKをクリックしてチャートに反映させる必要がありましたが、VA8.4では、チャート上でグループ化対象の要素を選択し、そのグループに名称を設定して、素早くカスタムグループを作成することができるようになりました。 6. Visual Analytics SDK

Data Visualization
Cindy Wang 0
How to Visualize Time Series Decomposition using SAS® Visual Analytics

Time-series decomposition is an important technique for time series analysis, especially for seasonal adjustment and trend strength measurement. Decomposition deconstructs a time series into several components, with each representing a certain pattern or characteristic. This post shows you how to use SAS® Visual Analytics to visually show the decomposition of

Analytics
SAS Global Forum 2019 論文紹介シリーズ 第1回「OSS言語から活用できるオープンなSASプラットフォーム」

例年と同様に、SAS Instituteはグローバル各国でフォーラムを開催しました。日本ではSAS Forum Japanと題して6月11日に東京の六本木で開催され、また、アメリカSAS本社はダラスでSAS Global Forum 2019を開催(4/28~5/1)し、その中では多数の論文が発表されています。本シリーズでは、これらの論文の中から、OSSとSASプラットフォーム製品のユースケース、OSSコーディング開発・運用事例、クラウドアーキテクチャの設計と運用等々の注目された内容を選別した上で、4回に分けて紹介していきます。 第1回「OSS言語から活用できるオープンなSASプラットフォーム」 近年、OSS(オープンソースソフトウェア)プログラミング言語が数多くのデータサイエンティストや企業によって利用され、分析モデルが開発されています。PythonやR、Luaなどデータサイエンティストや開発者たちに好かれたプログラミング言語はアナリティクス業界に革新をもたらしました。SASはそれらのOSSユーザと企業の要望に応じ、従来のSASユーザとOSSプログラミングユーザーたちが共同作業、かつ連携できるようなプラットフォームを提供しています。 今回は、OSSユーザがどのような方法を利用し、SASプラットフォーム上で自由自在なデータ分析を行えるのかをテーマとし、SAS Global Forumで公開した論文をご紹介します。 1.Open Visualization with SAS® Viya® and Python この論文では、オープンソース言語の一つであるPythonに関し、SAS ViyaのSWAT(Scripting Wrapper for Analytics Transfer)を通じて、メインにオープンソースのグラフィックテクノロジー、特にPythonのMatplotライブラリ、そして現在主流となっているD3の可視化フレームワークとのインテグレーション技術について紹介しています。本文で用いた例は、統計プログラミングのサンプルを使って、Jupyter NotebookからSAS Viyaの機能を呼び出し、最終的に、mpld3で作られた静的なグラフを動的グラフに変更した例となります。 2.SWAT’s it all about? SAS Viya® for Python Users SASは2016の7月にPythonライブラリSWATをリリースしました。それにより、PythonユーザはSASのCASに接続して、SAS Viyaの各種機能を使えるようになりました。SWATを利用することで、SAS言語バックグラウンドを持っていないユーザには、SAS言語ユーザと同じくCASとSAS Viyaの各種機能を使用できるようになります。この論文では、Python SWATを通じて、CASセッションへ接続し、PythonからCASへデータをロードし、さらにCASアクションで実行して分析する一連作業をデモンストレーションの形で紹介します。使用するデータは、SASほかのアプリケーション、例えばVisual Analyticsなどでも利用できる様子を紹介します。 3.Deploying Models Using SAS® and Open Source 近来、機械学習と人工知能の議論はほとんどの時間がモデル開発の議論に費やされています。しかし、モデルによって得られる洞察をどのように効率的にビジネス価値創出に適用するかに関してはほとんど議論されていません。この論文では、モデルの構築に応じ、Docker、Flask、Jenkins、Jupyter、Pythonなどのオープンソースプロジェクトとの組み合わせで、SASを使用してモデルを展開するためのDevOpsプリンシパルの使用例を紹介します。例に使われている関連アプリケーションはグローバルなユーザベースを持つ資産上のレコメンド・エンジンとなります。この使用例は、セキュリティ、待ち時間、スケーラビリティ、再現性に直面する必要があることをめぐってディスカッションします。最後に、その解決策となるソリューションとその課題となる部分を含めて説明します。 4.SAS®

1 26 27 28 29 30 98