Tag: Artificial Intelligence

Data Visualization
SAS Visual Analyticsで地図上にカスタム境界線(領域)を描いて分析―(続編)

前回、この機能を紹介した際には、海外に実在する施設や地図上での活用例をご覧いただきました。 その続編となる今回は、以下の2点に関してご紹介します。 (尚、以下のデモ画面に表示されている数値(座席数、利用率、収益率、等)はすべてダミーデータです)   1.日本地図上に実在する施設に対するカスタム境界線分析 2.カスタム境界線機能で、こんなことまでできるなんて…   1.日本地図上に実在する施設に対するカスタム境界線分析 私は埼玉県さいたま市に在住しているのですが、だからというわけではありませんが、今回は、埼玉スタジアムの座席レイアウトを地図上の埼玉スタジアム上に描画してみました。(図1.参照) 図1.埼玉スタジアム地図上に描画された、観客席レイアウト 図1.では、「客席別利用率」ページが表示されています。 左側には客席ゾーン別の座席数が棒グラフで表示され、右側には、スタジアムの客席レイアウトが表示され、利用率によって色分けされています。また、棒グラフ上でゾーンCが選択され、スタジアム内の対応する客席の部分がハイライトされている状態です。 もちろん、SAS Visual Analytics(以降、VA)の標準機能を使用して、特定の客席エリアをクリックし、そのエリアのチケット料金や、収益の推移、などの詳細情報をポップアップで表示させることも可能です。 右側の地図が本当に埼玉スタジアムのある地点なのかを分かりやすく見ていただくために、図2.ではズームアウトしたものも載せました。埼玉スタジアムは国道122号線沿いにあるんですね。 図2.図1.から地図を少しズームアウトした状態 以下の図3.は同じレポート内の「ゾーン別客席マップ」ページです。棒グラフのゾーン別の色に合わせて、客席エリアの色を合わせたものです。 図3.「ゾーン別客席マップ」ページ   2.カスタム境界線機能で、こんなことまでできるなんて… 実は、VAの地図描画用オブジェクトである、「ジオマップ」では、地図を非表示にすることができます。 あれ?、地図描画用の機能なのに、地図を非表示にする意味あるの?と思われるかと思いますが、これがあるんですね。 その一例をご紹介します。 以下の図4.は、とある列車の車両内の座席別収益率を分析するレポートです。座席ごとの収益率が色分けで表示されています。(座席別に収益率を把握する必要があるかどうかは別のお話ですが) 図4.列車内座席別収益率レポート この座席レイアウトも「ジオマップ」オブジェクトを使用し、地図上に描画されているものなのですが、地図は境界線(領域)を描くためには必要ですが、この例のような場合は、描いた後は地図が必要ないので非表示にしているわけです。地図を非表示にしていること以外は、その他の例と同様に、チャートやアナリティクスとのインタラクション等はもちろん可能です。 上記の図4.でも、座席別収益率の棒グラフ上で、最も収益率の低い座席(右端の棒)を選択し、該当の座席位置をハイライト表示しています。 SAS Visual Analytics on SAS Viyaでは、こんなこともできるんですね。 例えば、人体図の中の内臓別の疾患状況をビジュアルに分析する、工場内プラントの設備(工程)ごとの稼働状況を図解でビジュアルに可視化し分析する、店舗内の商品陳列棚別の在庫状況や売上状況を図解でビジュアルに可視化し分析する…なんていうこともできそうですね。

Analytics | Artificial Intelligence
Thomas Keil 0
Künstliche Intelligenz: Wie können Unternehmen am besten innovieren? – Fragen an Data-Science-Experte Holger von Jouanne-Diedrich

Background: Prof. Dr. oec. HSG Holger K. von Jouanne-Diedrich ist seit 2013 Professor für Wirtschaftsinformatik und Customer Relationship Management an der Hochschule Aschaffenburg, Bayern. Er promovierte am Institut für Wirtschaftsinformatik der Universität St. Gallen, Schweiz, und studierte Betriebswirtschaftslehre an der Universität Hamburg. Weiterhin hatte er verschiedene Stationen bei der Lufthansa, der

Machine Learning
Makoto Unemi (畝見 真) 0
ディープラーニングの判断根拠

予測モデル生成において、従来は、人が考えてデータの中から特徴を抽出する必要がありましたが、ディープラーニングでは、この特徴を自動的に抽出して学習することが可能になっています。 半面、どのように特徴が抽出されているのかに関しては、基本的にはブラックボックスであり、説明責任が求められるような業務要件では、その分析結果を業務に活用することが難しい場合もあります。 しかし、近年ディープラーニングから出てきた結果の根拠=判断根拠を可視化する手法がいくつか考案されてきています。 関連情報サイト: https://qiita.com/icoxfog417/items/8689f943fd1225e24358 https://pair-code.github.io/saliency/ http://blog.brainpad.co.jp/entry/2017/07/10/163000 SAS Viyaでは、各種のディープラーニング(DNN, CNN, RNN)を用いた学習が可能ですが、今回はCNNを用いた画像認識において、判断根拠となり得る情報の出力に関してご紹介します。 この例は、複数のイルカの画像をCNNで学習し、対象の画像(写真)がイルカなのかどうかを判別するものです。 モデルを作成後、以下の画像をモデルに当てはめてスコアリングを実施。 この画像は「イルカ」だと判定されたのですが、その判断根拠の一つとして、以下のように、この画像のどの部分がより重要であると判断されているのかを可視化することが可能になっています。 【レイヤー1のfeature map】 【レイヤー18のfeature map】 SAS Viyaでは、モデルのスコアリング時のオプションとして、指定したレイヤ(層)の特徴マップ(feature map)を画像として指定ライブラリに出力することが可能です。 >> スコアリング用のアクション:”dlScore” の layerOut={出力先ライブラリとテーブル名} オプションと layers={出力対象レイヤ名} オプション >> 上図はライブラリに出力された画像(feature map)を表示したものです。

Advanced Analytics | Analytics | Artificial Intelligence | Internet of Things | Machine Learning
Oliver Schabenberger 0
Two tech trends shaping 2018 and beyond

Technology is changing rapidly: autonomous vehicles, connected devices, digital transformation, the Internet of Things (IoT), machine learning, artificial intelligence (AI), automation. The list goes on. And it has only begun. I am often asked, “What is next for SAS? What will the future of analytics look like in 20 years?”

Artificial Intelligence | Machine Learning
Makoto Unemi (畝見 真) 0
SAS Viyaを「無償」で「実データ」で「体感」してみよう!

2017年12月にSAS Viyaの最新版3.3がリリースされました。 これに伴い、皆様には、大幅に拡張されたSAS Viyaの機能を存分に体感いただくために今版から、皆様がお持ちの「実データ」でSAS Viyaベースのすべての製品を自由に触っていただけるようになりました。 ぜひ、ご利用ください! 利用手順に関しては、以下のブログをご覧ください。 SAS Viyaを体感してみよう! ~SAS Viya無償試用版利用ガイド~

Machine Learning | Programming Tips
Makoto Unemi (畝見 真) 0
SAS Viyaにディープラーニングが登場! さっそく画像分類してみた。

SAS Viyaがリニューアルされまして、ついにディープラーニングが登場しました! SAS ViyaのディープラーニングではオーソドックスなDeep Neural Network(DNN)から、画像認識で使われるConvolutional Neural Network(CNN、畳込みニューラルネットワーク)、連続値や自然言語処理で使われるRecurrent Neural Network(RNN、再帰的ニューラルネットワーク)まで利用可能になります。 ディープラーニングを使うことのメリットは、従来の機械学習やニューラルネットワークが苦手としている画像や文章を認識し、高い精度で分類や推論することが可能になります。 高い精度というのは、ディープラーニングのモデルによっては人間の目よりも正確に画像を分類することができるということです。 例えばコモンドールという犬種がありますが、この犬はモップのような毛並みをしていて、人間ではモップと見間違えることがあります。 これは犬? それともモップ? こういう人間だと見分けにくい画像に対しても、ディープラーニングであれば、人間よりも正確に犬かモップかを見分けることができるようになります。 というわけで、今回はSAS Viyaのディープラーニングを使って画像分類をしてみたいと思います。 ディープラーニングの仕組み 画像分類のディープラーニングではCNNを使います。 CNNは画像の特徴を探し出す特徴抽出層と特徴から画像を分類する判定層で構成されています。   特徴抽出層は主に畳込み層とプーリング層で構成されています。 畳込み層で入力画像に対し、ピクセルの特徴(横線の有無とか斜め線とか)を探し出し、プーリング層で重要なピクセルを残す、という役割分担です。 判定層は、特徴抽出層が見つけた特徴をもとに、画像の種類を分類します。 例えば犬と猫の分類であれば、特徴抽出層が入力画像から、面長で大きな鼻の特徴を見つけだし、犬と分類します。   または、丸っこい顔立ちと立った耳の特徴を見つけだし、猫と分類します。   SAS Viyaで画像を扱う SAS ViyaディープラーニングでCifar10をネタに画像分類をしてみたいと思います。 Cifar10は無償で公開されている画像分類のデータセットで、10種類の色付き画像60,000枚で構成されています。 各画像サイズは32×32で、色はRGBです。 10種類というのは飛行機(airplane)、自動車(automobile)、鳥(bird)、猫(cat)、鹿(deer)、犬(dog)、蛙(frog)、馬(horse)、船(ship)、トラック(truck)で、それぞれ6,000枚ずつ用意されています。 画像は総数60,000枚のうち、50,000枚がトレーニング用、10,000枚がテスト用です。   画像データは以下から入手することができます。 https://www.cs.toronto.edu/~kriz/cifar.html さて、Cifar10を使って画像分類をしてみます。言語はPython3を使います。 SAS Viyaで画像分類をする場合、まずは入手したデータをCASにアップロードする必要があります。 CASはCloud Analytics Servicesの略称で、インメモリの分散分析基盤であり、SAS Viyaの脳みそにあたる部分です。 SAS Viyaの分析は、ディープラーニング含めてすべてCASで処理されます。 CASではImage型のデータを扱うことができます。 Image型とは読んで字のごとくで、画像を画像フォーマットそのままのバイナリで扱えるということです。

Customer Intelligence
Oliver Börner 0
Richtige Kfz-Versicherung oder nicht …? Das zeigt sich erst, wenn was passiert

Autounfall und positives Kundenerlebnis? Wie passt das denn zusammen? Vor einigen Monaten ist es dann doch passiert: einmal unaufmerksam gewesen und Auffahrunfall in der Stadt verursacht. So ein Mist! Nicht wirklich schlimm – nur ein bisschen Blechschaden, aber super ärgerlich … Nachdem das Auto abgeschleppt und der erste Ärger verflogen

Analytics
Karen Prillwitz 0
Industrie 4.0 – künstliche Intelligenz und maschinelles Lernen ODER Wie aus Enthusiasmus über Ernüchterung tatsächlicher Gewinn entsteht

Künstliche Intelligenz (KI), maschinelles Lernen (ML) und Analytics erleben zurzeit einen wahren Boom. Geht es nach den Anbietern, gelangen Produktionsabteilungen mithilfe von Industrie 4.0 und Digitalisierung in ein neues, goldenes Zeitalter, in dem Maschinen „selbstlernend“ für Qualitätsverbesserungen und Kostenreduktion sorgen. Doch anfänglichem Enthusiasmus und ersten positiven Erkenntnissen folgt meist Ernüchterung,

Analytics
Suzanne Clayton 0
Analytics = brilliance

I recently spent two days with an innovative communications customer explaining exactly what SAS analytics can do to help them take their advertising platform to a whole new level. Media meets data resulting in addressable advertising. SAS would essentially be the brain behind all their advertising decisions, helping them ingest

Analytics | Artificial Intelligence | Fraud & Security Intelligence | Machine Learning
Jen Dunham 0
Considering fraud-fighting with machine learning and artificial intelligence?

Any look back at analytics in 2017 makes it clear that machine learning and artificial intelligence appear to be the ‘next big things’ that can solve just about any problem, from writing new hit songs to curing disease. Not one to buy into the hype, I became curious as to

Advanced Analytics | Analytics
Christian Goßler 0
Lenin und der Rote Rapper im Internet of Ticks (IoT5)

„… Internet, Internet, ich hör‘ hier immer Internet. Sag’n Se‘ ma‘, ganz richtig ist das nicht!“ Der Service-Manager errötet nach seinem Rap. Lenin schwankt zwischen Belustigung und bolschewistischem Ingrimm: Stellt der Rote Rapper seine Erfolge im Internet of Things infrage? Der Rapper fährt fort: „Denn diese Daten, die Sie verbraten,

Analytics | Artificial Intelligence | Data Management | Machine Learning
Sandra Hernandez 0
Las 10 tendencias para continuar con la transformación digital en el 2018

Es claro que este año que está por finalizar ha traído grandes cambios para todo el mundo en cuanto a transformación digital se trata, se estructuraron cambios en las industrias, la economía e incluso las formas de comunicación con sus clientes. Pero la tecnología no se detiene y cada día que pasa

Advanced Analytics | Programming Tips
Makoto Unemi (畝見 真) 0
SAS Viyaで線形回帰

SAS Viyaで線形回帰を行う方法を紹介します。 言語はPythonを使います。 SAS Viyaで線形回帰を行う方法には大きく以下の手法が用意されています。 多項回帰: simpleアクションセットで提供。 一般化線形回帰または一般線形回帰: regressionアクションセットで提供。 機械学習で回帰: 各種機械学習用のアクションセットで提供。 今回は単純なサインカーブを利用して、上記3種類の回帰モデルを作ってみます。   【サインカーブ】 -4≦x<4の範囲でサインカーブを作ります。 普通に $$y = sin(x) $$を算出しても面白みがないので、乱数を加減して以下のようなデータを作りました。これをトレーニングデータとします。 青い点線が $$y=sin(x)$$ の曲線、グレーの円は $$y=sin(x)$$ に乱数を加減したプロットです。 グレーのプロットの中心を青い点線が通っていることがわかります。 今回はグレーのプロットをトレーニングデータとして線形回帰を行います。グレーのプロットはだいぶ散らばって見えますが、回帰モデルとしては青い点線のように中心を通った曲線が描けるはずです。 トレーニングデータのデータセット名は "sinx" とします。説明変数は "x"、ターゲット変数は "y" になります。 各手法で生成したモデルで回帰を行うため、-4≦x<4 の範囲で0.01刻みで"x" の値をとった "rangex" というデータセットも用意します。 まずはCASセッションを生成し、それぞれのデータをCASにアップロードします。 import swat host = "localhost" port = 5570 user = "cas" password = "p@ssw0rd"

Machine Learning
小林 泉 0
機械学習のパラメータをオートチューニングしよう(回帰編)!

先日投稿した「機械学習のパラメータをオートチューニングしよう(分類編)!」の続きです。 今回は回帰分析をオートチューニングします。 あらまし 機械学習の課題はパラメータチューニングで、手動で最高のパラメータを探そうとすると、とても時間がかかり効率的ではありません。 SAS Viyaではパラメータチューニングを自動化するオートチューニング機能を提供しています。 オートチューニング機能を使うことで、限られた時間内、条件下で最高のパラメータを探索し、予測モデルを生成することができます。   今回やること 今回はオートチューニングを使って数値予測モデルを生成します。 使うデータは架空の銀行の金融商品販売データです。顧客の取引履歴と営業履歴から構成されており、新たな金融商品の販売数を予測するデータとなっています。 内容は以下のようになっており、約5万行、22列の構成です。 1行1お客様データとなっていて、顧客の口座情報や取引履歴、営業履歴が1行に収納されています。 ターゲット変数はcount_tgtで、これは各顧客が購入した金融商品数を表しています。 ほとんどが0(=未購入)ですが、購入されている顧客の購入数を予測するモデルを生成します。 今回はランダムフォレストを使って予測したいと思います。 ランダムフォレストは別々の決定木を複数作り、各決定木の予測値をアンサンブルして最終的な予測値とする機械学習の一種です。   まずは手動で予測 SAS Viyaでランダムフォレストを使って予測モデルを生成するにあたり、まずはCASセッションを作ってトレーニングデータとテストデータをインメモリにロードします。 # PythonからCASを操作するためのSWATライブラリをインポート import swat   # 接続先ホスト名、ポート番号、ユーザー名、パスワードを指定 host = "localhost" port = 5570 user = "cas" password = "p@ssw0rd"   # mysessionという名称のCASセッションを作成 mysession = swat.CAS(host, port, user, password)  

Machine Learning
小林 泉 0
機械学習のパラメータをオートチューニングしよう(分類編)!

機械学習で予測モデルを作るとき、課題のひとつにパラメータのチューニングがあります。 パラメータとはどういう設定値や制限値で機械学習の予測モデルを作るのかを示すものです。 料理に例えると、チャーハンを作る過程が機械学習のアルゴリズムだとすると、どういう具材をどのくらいの量入れるのかがパラメータです。 お米の品種や卵の有無、豚肉か鶏肉か、調味料の種類や量がパラメータになります。チャーハンの良し悪しはこれらパラメータの良し悪しに左右されます。おいしいチャーハンを食べるためには、具材をベストな組み合わせと量で投入する必要があります。 昼食においしいチャーハンを食べたので、チャーハンでたとえました。 話を戻すと、機械学習の決定木の深さであったり、ニューラルネットワークのニューロン数であったり、パラメータは自分で設定する必要があります。機械学習では複数のパラメータを組み合わせて、ベストなレシピを作らねば良い予測モデルは作れません。   SAS Viyaでは各種機械学習アルゴリズムを提供していますが、各機械学習にそれぞれのパラメータが用意されています。料理に例えると、メニューにチャーハンのみならず餃子、ラーメン、寿司、ステーキ、チーズケーキがあるようなものです。シェフ(≒データサイエンティスト)は全てのベストなレシピ(≒パラメータ)を探索せねばならず、労力がいります。 しかし! SAS Viyaには更に便利な機能として、オートチューニングというものが用意されています。 オートチューニングは最も良いパラメータを短い時間で探索してくれる機能です。料理に例えると、究極のチャーハンレシピをViyaが自動的に作ってくれる機能です。夢のようですね。 オートチューニングでは機械学習のパラメータを変えながら複数の予測モデルを作り、最も良い予測モデルのパラメータを探してくれるというものです。決定木だけでもパラメータは10種類以上あるのですが、それらの最良な値をみつけてくれます。 パラメータチューニングを行う際、最も安易な探索方法は各パラメータの全パターンを試すことです。全パターンを試せば、その中から最も良いものはたしかにみつかります。しかし欠点はパラメータチューニングに長い時間がかかってしまい、現実的な手法ではありません。 SAS Viyaのオートチューニングはより賢いパラメータ探索のアルゴリズムを4種類用意しています。 遺伝的アルゴリズム(Genetic Algorithm, GA):パラメータを遺伝子と見立てて、淘汰、交叉、突然変異を組み換えすことでパラメータを探索する。 ラテン超方格サンプリング(Latin HyperCube Sampling, LHS):層別サンプリングの一種で、各パラメータをn個の区間に分割し、区間からランダムに値を取り出してパラメータを探索する。 ベイズ最適化(Bayesian Optimization):説明変数と予測の間にブラックボックス関数があると仮定し、ブラックボックス関数のパラメータの分布を探索する。 ランダムサンプリング(Random Sampling):ランダムにパラメータの値を選択して探索する。 探索アルゴリズムを詳しく説明していると終わらないので説明を短くまとめました。SAS Viyaではいずれかのアルゴリズムを利用してオートチューニングを実行することができます。   今回はPythonからSAS Viyaを操作して、オートチューニングを試してみたいと思います。 まずはPython SWATをimportし、CAS Sessionを生成してデータをロードします。 # PythonからCASを操作するためのSWATライブラリをインポート import swat   # mysessionという名称のCASセッションを作成 mysession = swat.CAS(host, port, user, password)   #

Machine Learning
SAS Viyaのチートシートを作ってみました。

SAS Viyaでは購入前に使い勝手を試していただくため、無償使用版を提供しています。 https://www.sas.com/ja_jp/software/viya.html#preview もう試していただいた方もいらっしゃるかもしれませんが、SAS StudioやJupyter Notebook、Visual AnalyticsからSAS Viyaを操作して、データマイニングや機械学習を便利に試していただくことが可能です。 この無償使用環境では動作確認済みのデモプログラムを提供していますので、機械学習やプログラミングに不慣れでも迷うことはありません。   しかし機械学習を実業務で使い始めようとすると、どのプロシージャやメソッドを使えば良いのか、わからなくなることが多々あります。 SAS Viyaでは機械学習ユーザに不足ないよう、多種多様なプロシージャを提供していますが、プロシージャが増えるとどの場面でどれを使うんだっけ?と迷ってしまいます。   そこで、SAS Viyaのチートシートを作ってみました。 このチートシートを使えば、用途にあわせて必要なプロシージャを選択していくことができます。 SAS Viyaが提供するプロシージャから重要なものを掲載しています。   SAS ViyaはSAS PROCとActionsetという2種類のプログラミング仕様があります。 チートシートもPROC用とActionset用で2種類作りました。   PDF版は以下にありますので、ぜひご参照ください。 viya_cheat_sheet_20170721_jp  

Advanced Analytics | Programming Tips
SAS Viyaでフーリエ変換

みなさま、こんにちは。 さて突然ですが、フーリエ変換ってご存知ですか? おそらく物理学や経済学で波形データを分析したことのある方には馴染みがあるでしょうが、フーリエ変換は波形データを扱う手法です。 フーリエ変換では周期的な波形を、sin波やcos波の重ね合わせで説明しようというものです。 たとえば以下のような波形データは、どの時間にどのくらいの強さの波が流れているかを表現しています。 これをフーリエ変換することで、周波数と振幅で表すことができるようになります。 ↓ フーリエ変換! ↓   従来のSAS製品では波形データでフーリエ変換をする機能を提供していなかったのですが、SAS ViyaのSAS Forcastingという製品を使うことで、フーリエ変換を実施することができるようになりました。 SAS Viyaでできるのは短時間フーリエ変換(Short time Fourier transform)です。 今回はSAS Viyaでフーリエ変換を実施してみたいと思います。プログラミング言語はPythonを使用します。 まずは前準備として、必要なライブラリをインポートし、CAS sessionを作成します。 CAS sessionはSAS Viyaでデータ分析を行うCASというエンジンへ認証し、接続するものです。 # CAS sessionの用意 import swat   host = "localhost" port = 5570 user = "user" password = "p@ssw0rd"   mysession = swat.CAS(host, port, user, password)   #

Machine Learning
SAS Viyaを体感してみよう! ~SAS Viya無償試用版利用ガイド~

みなさんは、SAS Viyaを無償で試す方法を知っていますか? 手順は簡単、 ① SAS Japanホームページ内のSAS Viya無償試用開始サイトにアクセス ② 無償試用版リストから希望の製品を選択 ③ SASプロファイル情報を登録 ④ 登録済みのSASプロファイル情報でサインイン ⑤ SASから届くメール内にある試用版サイトリンクをクリックし、同メール内に記載されたIDとパスワードでサインイン ⑥ SAS Viyaにサインインして試用開始 これだけです。 ※尚、このガイドは、2018年8月時点の内容に基づいて作成されています。利用手順は予告なく変更される場合がありますので、実際に表示される画面や送られてくるメール内容に従っての操作をお願いします。 ブラウザはChrome 64bit版が推奨です。(ブラウザは Chrome 61以上, Firefox 56以上, MS Edge40.1以上を使用してください) では、1ステップずつ詳しくご紹介しましょう。 ① SAS Japanホームページ内のSAS Viya無償試用開始サイトにアクセス 以下のリンクをクリックして、SAS Viya無償試用開始サイトを表示しよう。 https://www.sas.com/ja_jp/software/viya.html#preview ② 無償試用版リストから希望の製品を選択 この手順では、「SAS Visual Data Mining and Machine Learning」を選択した例で紹介しています。 (以下のリストに表示されていない製品に関しては、チュートリアル等使用をガイドするような資料は提供していませんが、同一環境内で試用することはできます。) ③ SASプロファイル情報を登録 (すでにSASプロファイル登録済みの場合は、このステップは必要ありません。) 以下の画面内で、「Create one」リンクをクリックします。

Artificial Intelligence
PythonからSASの画像処理機能を使って画像マッチング

5月23日に開催されたSAS Forum Japan 2017の「SAS Viyaディープダイブ」セッションでは、SASのAIに搭載されている画像処理機能が入門レベルとして紹介されました。 セッション内では、皆様にとってもお馴染みの「浅草雷門」の写真を使った画像マッチングのデモも紹介しました。雷門を正面から撮った写真の中から、「雷門の提灯」の部分を切り出し、これをテンプレート画像として使用し、この「雷門の提灯」が写っている写真だけを画像マッチングによって見つけ出すというデモです。 さあ、ちゃんと「雷門の提灯」が写っている写真だけを見つけ出すことができたのでしょうか? 以下は、Jupyter Notebookを使用し、PythonからSAS の画像処理機能を活用してマッチングを実行した結果です。(コードの一部抜粋) 【ライブラリのインポート】 In [16]: # import libraries import swat import matplotlib.pyplot as plt import os import json import numpy as np 【テンプレート画像「雷門の提灯」のロード】 In [24]: # load an image to cas r = conn.image.loadImages(casout={"caslib":"casuser", 'name':tmp_file_data[0], 'replace':True}, path=tmp_file_path) tmpTable = conn.CASTable(tmp_file_data[0]) 【この画像にマッチングさせます】 【マッチング対象画像のロード】

Analytics | Machine Learning
SAS言語派集まれ!SAS StudioからSASのAIを使ってみよう!

5月23日に開催されたSAS Forum Japan 2017では、通常のセッション枠とは別に、「スーパーデモ」と題して、各種SAS製品やソリューションのデモが紹介されました。通常セッションの休憩時間はもとより、セッション時間中でも多くの方々が「スーパーデモ」エリアに集まり、食い入るようにデモも見られていました。 その中で、私が実施したデモ内容をご紹介します。 SASのAI機能は、SAS言語のみならず、Python, R, Java, Luaなどの汎用プログラミング言語からも活用可能ですが、このデモでは、SAS Studioを使用し、SAS言語でSASのAI機能を活用したモデル作成を行いました。 詳細(スライド版)に関しては、以下をご覧ください。(SlideShareに公開済み) SAS言語派集まれ!SAS StudioからSAS Viyaを使ってみよう! from SAS Institute Japan 詳細(デモ版)に関しては、以下をご覧ください。(YouTubeに公開済み) 今なら無償でSAS Viyaを試用することができます。詳細は以下のブログを参照してください。 SAS Viyaを体感してみよう! ~SAS Viya無償試用版利用ガイド~

Analytics | Artificial Intelligence
SASのAI機能で異常検知してみよう!

5月23日に開催されたSAS Forum Japan 2017の「SAS Viyaディープダイブ」セッションでは、SASのAIに搭載されている教師なし学習の3つの手法(SVDD(Support Vector Data Description), ロバストPCA, Moving Window PCA)を用いた異常検知の概要が紹介されました。 手法ごとの適用分野やSAS Studioを用いて実行した結果の紹介と、異常検知を業務に適用する際に留意すべき事項も交えてご紹介しています。 詳細(スライド内容)に関しては、以下をご覧ください。(SlideShareに公開済み) SAS Viya で異常検知してみよう! from SAS Institute Japan 詳細(講演ビデオ)に関しては、以下をご覧ください。(YouTubeに公開済み) 今なら無償でSAS Viyaを試用することができます。詳細は以下のブログを参照してください。 SAS Viyaを体感してみよう! ~SAS Viya無償試用版利用ガイド~

Analytics
Pythonで操るSASの画像処理技術入門編

5月23日に開催されたSAS Forum Japan 2017の「SAS Viyaディープダイブ」セッションでは、SASのAIに搭載されている画像処理機能が入門レベルとして紹介されました。 従来からSASを活用されている方々にとっては、「SAS」と「画像処理」って、なかなか結びつかないのではないでしょうか? 「画像処理技術」に関して、SASではどのようなアプローチをとってきているのか...を、過去、現在、そして未来に分けて紹介しています。 詳細(スライド内容)に関しては、以下をご覧ください。(SlideShareに公開済み) Pythonで操るSAS Viyaの画像処理技術入門編 from SAS Institute Japan   詳細(講演ビデオ)に関しては、以下をご覧ください。(YouTubeに公開済み)