全般

SAS Events | Students & Educators
小林 泉 0
筑波大学学生によるAnalytics Experience 便り(2日目)

現地時間 2017/9/18,19,20 にてSASの秋のグローバルイベントである、「Analytics Experience 2017 (以下AX2017)」がアメリカ合衆国ワシントンDCで開催中です。前回に引き続き、今回は、日本から参加している筑波大学理工学群社会工学類経営工学主専攻4年生の村井諒さん,小林大悟さん,白鳥友風さん3名による参加レポート2日目を掲載します。 e-Poster部門@AX2017 発表への道のりby 筑波大学学生 昨日に引き続き、アナリティクスの最先端を行く発表が次々に行われていく中、私たちは今回の参加目的である二日目正午のStudent e-Poster部門の発表に臨みました。 イベントセッション情報:「Optimization of discounts at a retail store based on POS data keeping customer purchasing experience」 Student e-Posterは、学生がSASの製品を用いてアナリティクスの価値および可能性を提供する場です。学生たちは自身が作成したポスターを基に参加者にプレゼンテーションを行います。このセッションでは一方的な発表ではなく、ポスターを見に来たデータサイエンスに携わる教育関係者や企業関係者の方々と対話形式で発表の内容に関する意見を交換します。 今回のポスター発表は筑波大学理工学群社会工学類経営工学主専攻の目玉授業であるマネジメント実習で行った発表の内容を基に行ったものです。マネジメント実習では、学生がデータサイエンティストとして実データの分析から経営改善案の作成までを行う講義であり、ビジネスにおけるデータサイエンスの重要性を学ぶことができます。講義は10週にわたって行われ、プロのデータサイエンティストの方々からアドバイスを受けながら、アナリティクスを通じて改善案を練っていきます。これらの一連の取り組みは、同大学主催のビジネスデータ分析コンテストと平行して行われ、最終発表ではデータの提供企業の経営層の方を前に発表をし、その場で表彰が行われ、かつフィードバックを受けるという内容です。 参考:「SAS、大学におけるデータ・アナリティクス教育の質的向上のため、筑波大学に分析環境を提供」 私たちはSAS Enterprise Guideを用いて、小売店のPOSデータから価格と販売数量の関係を分析し、販売数に寄与しない値引きを明らかにすることで、コストを削減して経営改善を図る手法を提案しました。 今回のStudent e-Posterでは、先に上げたSAS Enterprise Guideや、より高度な分析を行うことができるSAS Enterprise Minerを使用してアナリティクスを行った他大学の学生によるポスターが多数展示され、データサイエンスに携わる方々に自分たちのポスターの内容を説明しました。聴講者の中には、ビジネスの第一線で活躍されている方も見受けられました。 このような環境でのポスター発表を通して、大学の実習講義では得ることの出来なかった、ビジネスに携わるデータサイエンティストとして重要な『最大限に利益を追求する姿勢』を学び取ることが出来ました。 発表中に企業の方から受けた質問の中には、「この手法をいかにして自分たちのビジネスに活かせるか」、「なぜ価値のない値引きだけに着目したのか」、「もっと利益を生み出すためにはまだできることがあると思うが、なぜそれをしなかったのか」といったものがありました。 これらの質問は、実習内では気づけなかった、利益を最大限に追求するビジネスの姿勢に基づいたものです。 事実私たちが提案した、無駄な値引きを明らかにすることによりコストを削減する手法は、経営改善を果たす上での一つの手段でしかありません。 私たちは無駄なコストの削減にのみ注目した価格最適化を行いましたが、価格の最適化は、無駄なコストの削減だけでなく、販売点数の増加や、時間とともに変化する顧客の性質なども踏まえて行うことができるはずです。 私たちは経営改善可能性として「無駄な値引きを減らす」という一つの案にたどり着いた結果、いかに無駄な値引きを無くすかということに固執していました。これは目標が、「経営改善」から「経営改善のための分析」にいつの間にか変わってしまい、分析すること自体に集中しすぎてしまったからです。特に私たちのようにビジネスの経験が少ない日本の学生はこのような方向に進んでしまう傾向があると思います。実際のビジネスにおいては、何が必要なのか、何ができるのかを常に意識し、そのうえでアナリティクスを活用することが重要だと考えられます。このことからビジネスにおいて、取りうる選択肢を柔軟に取捨選択し、最大の利益を求める姿勢を保ち続けることの大切さを実感しました。 このことを私たち学生が日本のデータサイエンス教育から学び取ることができれば、ビジネスに携わるデータサイエンティスト育成がさらに有意義なものになっていくだろうと感じました。 イベントも残り1日となりました。明日も様々なセッションを通し、学び取れることはすべて学び取るという心持で最終日に臨みたいです。

Machine Learning
SAS Viyaのチートシートを作ってみました。

SAS Viyaでは購入前に使い勝手を試していただくため、無償使用版を提供しています。 https://www.sas.com/ja_jp/software/viya.html#preview もう試していただいた方もいらっしゃるかもしれませんが、SAS StudioやJupyter Notebook、Visual AnalyticsからSAS Viyaを操作して、データマイニングや機械学習を便利に試していただくことが可能です。 この無償使用環境では動作確認済みのデモプログラムを提供していますので、機械学習やプログラミングに不慣れでも迷うことはありません。   しかし機械学習を実業務で使い始めようとすると、どのプロシージャやメソッドを使えば良いのか、わからなくなることが多々あります。 SAS Viyaでは機械学習ユーザに不足ないよう、多種多様なプロシージャを提供していますが、プロシージャが増えるとどの場面でどれを使うんだっけ?と迷ってしまいます。   そこで、SAS Viyaのチートシートを作ってみました。 このチートシートを使えば、用途にあわせて必要なプロシージャを選択していくことができます。 SAS Viyaが提供するプロシージャから重要なものを掲載しています。   SAS ViyaはSAS PROCとActionsetという2種類のプログラミング仕様があります。 チートシートもPROC用とActionset用で2種類作りました。   PDF版は以下にありますので、ぜひご参照ください。 viya_cheat_sheet_20170721_jp  

Internet of Things
小林 泉 0
SAS Forum Japan 2017 センサーによるリアルタイム行動トラッキング

SAS Forum Japan 会場自体がデモスペースへ SAS Forum Japan 2017では、株式会社ATR-Promotionsにご協力いただき、会場2Fのスペースにレーザーセンサーを設置、人の動線をリアルタイムに捉えて計測・分析するIoTデモンストレーションを実施しました。 会場で利用した「人位置計測システム」の計測イメージ参考映像。(※こちらはSAS Forum Japan の映像ではありません)   利用した技術について 利用技術①センサー LRF:レーザーレンジファインダ(安全な出力の赤外線レーザー) 利用技術②人位置計測システム ATRacker レーザーセンサーを複数台設置し、人々の位置・行動を、1秒間に数十回計測したデータを、ATR-Promotions社ソフトウェアの人位置計測システム「ATRacker」の形状認識・行動推定アルゴリズムで動線データ化しています。 特徴) 高精度(距離20mで誤差5cm以内のセンサを使用して計測、追跡) 形状認識(腕の位置などを利用して身体、身体の向きも捕捉) 行動追跡(同一人物を追跡。統計モデルによりレーザが遮られても位置を予測) 匿名性の確保(カメラと異なり顔や服装を捕捉しない) 大人数の同時計測(同時に50人以上の位置を計測、追尾) リアルタイム処理 外部プログラム連携 参照) http://www.atr-p.com/products/HumanTracker.html http://www.atr-p.com/products/pdf/ATRacker.pdf 利用技術③SAS® Event Stream Processing(略称 SAS ESP) リアルタイムでストリーミングデータを処理するSASソフトウェア。 ATRackerよりストリーミングでデータをリアルタイムに取得し・追加処理しています。今回の展示例では、特定の位置に人が急速に近づいた場合に、リアルタイムアラートを発します。 参照) https://www.sas.com/ja_jp/software/event-stream-processing.html 利用技術④利用したハードウェア AFT:The Analytics Fast Track™ for SAS® 最新のビッグデータ・アナリティクスを、自社データですぐに試す為に用意されたハイスペックマシン。 必要なSASのビッグデータ・アナリティクス製品がインストール&構成済みであり、スイッチを入れて、データを投入すれば、すぐに使える状態にしております。 POC等の実施に際し、当マシンを貸し出すことで、POC環境の用意をわずか数日で揃えることが可能です。 72

Analytics | SAS Events
小林 泉 0
今年のSAS Forum Japan 2017はすごい-怒涛のデモ20連発!

2017/5/23にSAS Forum Japan 2017が開催されます。まだ参加後登録がお済でない方は下記からご登録ください。 SAS Forum Japanご登録サイトへ 今回は、その中でもセッション以外のところも今年はすごいので、ご紹介します。 すごいところ①:スーパーデモ20連発 今回のブログのタイトルにもありますが、今年はグローバルのイベントである、SAS Global Forumを模して、「スーパーデモ」なるものを実施します。これは約15分のデモセッションを次から次へと繰り返し行うものです。通常のセッションの数が限られているため、そこでご紹介しきれないSASソリューションや、セッションの補足的な説明など計20ものデモセッションが行われます。是非、時間の都合をうまくやりくりして頂いて、通常セッション、スーパーデモを渡り歩いて頂けると幸いです。 *括弧は、(何回目/全回数)の意味です。 *プログラムは変更される可能性がありますので、最新のプログラムと詳細はこちらからご確認ください。 12:15 - 12:30:さよならBI 〜 一歩先ゆくデータ分析の決定版 SAS Visual Analytics まるごとデモ!(1/4) 12:30 - 12:45:為替リスクヘッジの新しい取り組み(1/2) 12:45 - 13:00:コーディングなしでSASを使ってみよう!(1/3) 13:00 - 13:15:さよならBI 〜 一歩先ゆくデータ分析の決定版 SAS Visual Analytics まるごとデモ!(2/4) 13:15 - 13:30::SAS言語派集まれ!SAS StudioからSAS Viyaを使ってみよう! 13:30 - 13:45:需要管理(需要予測〜在庫最適化)のNext Generation 13:45 - 14:00:コーディングなしでSASを使ってみよう!(2/3) 14:00 -

SAS Events
小林 泉 0
SGF2017 レポート - 良いデータサイエンティストになる秘訣

昨年2016年のSAS Global Forumでも講演して好評だったEmma Warrillowという方が今年も講演されたので紹介します。まずは復習として、彼女が昨年披露した良いデータサイエンティストになるための5つの秘訣を見てみましょう。 ビジネスを理解しなさい:アナリティクスの目的はビジネス課題を解決することである ストーリーを語りなさい:単に分かったことを共有するのではなく、分析結果に基いてビジネスをどうすべきかを議論しなさい 視覚的にストーリーを語りなさい:グラフや図を使用して、より理解を深めることを心がけること よい質問を繰り返しなさい:よりたくさん質問することで、より理解が深まる 新しい技術についていくこと:よりよい表現方法を常に模索すること (2016 SAS Global Forum でのEmma Warrillowの講演より。proceedingはこちら) 「それで?あなたはどう思うの?」と返したくなるデータ分析や仕事の報告、「顧客の理解を深めるための労(繰り返しの問い)を惜しむ」ケースは、ビジネスシーンでよく見受けられますが、あなたの会社ではいかがでしょうか?15年前、あるお客様から、「顧客の顔が見えないのでデータマイニングでなんとかしたい」という相談を受けたのを今でも覚えています。データ自身は何も語ってくれません。事実に基いてストーリーを考え、適切な問いを繰り返すことで初めて洞察(自分たちの顧客に対する理解)が得られるのです。 『問いかけること』 が、とても大事です。 さて、この彼女が今年もプレゼンをし、少しリバイスした秘訣を披露してくれました。レベル感はあまりそろってませんが、どれも、忘れがちなことなので、今一度自分自身の気を引き締めるために取り上げることにしました。 ①スプレッドシートを送付するだけという行為はNG 受け取った人は、無視するか、イライラするか、誤って解釈するだけです。概要、どのように見るべきか、結論は?相手にどうして欲しいのかを伝えることが必要不可欠です。 ②POETを意識すること StorylyticsのLaura Warren より Purpose(目的): このチャートの目的は… Observation(あなたの着眼点): 見て欲しいのは... Explanation(説明): 何を意味しているかというと… Take-away or Transition(要点): 次のステップは… ③アナリティクス・チームのブランディング 多くの企業・組織におけるアナリティクスチームは、PRの問題を抱えています。アナリティクスが真に有効で、またアナリストがちゃんとビジネスを理解していると認知されることが、とても重要です。 ④御用聞きにならないこと 自分がある専門領域のエキスパートであることを自覚し、適切な問い、適切な提案をすることが大事です。 ⑤正しく伝えること ストーリーテリングで人を動かすために、Peter GruberのThe Four Truths of the Storytellerを参考にすると良い。 Truth to the

Data Visualization | SAS Events
小林 泉 0
SGF2017 レポート - 例年とはちょっと違うTechnology Connection

例年、SAS Global Forumでは2日目の朝は、最新のSASテクノロジーを紹介する『Technology Connection』というセッションで始まりますが、今年は、そのセッションが少し変わった形式になりました。最新のテクノロジーを紹介するだけでなく、その開発を支える社員にフォーカスをあて、どのようにそのテクノロジーが開発されたのかを紹介しながら進められました。 各プレゼンターごとに流された紹介ビデオの中で、今年のTechnology Connectionのメインテーマである、『生涯学習』について語られました。Chief Technology Officerのオリバー・シャーベンバーガーは、もともとCTOになるつもりはありませんでした。実際、彼は林業で博士号を取得しています。しかし統計学への熱意が彼を大学の世界からソフトウェア開発の世界に導き、ハイパフォーマンス・コンピューティング、アナリティクス・プラットフォーム、人工知能そして他の先進技術に携わることになりました。『私は毎日が勉強です。皆さんもそうだと思います。SASも常に革新を続けて新しい製品を生み出し続けています』と彼は、機械が我々の生活を豊かにする象徴としてセグウェイに乗りながら、聴衆に語りかけました。 次世代のテクノロジー - SAS Graphics Accelerator プレゼンターの一人、エド・サマーズは、10歳で網膜色素の異常と診断され徐々に視力を失いました。彼は現在法的盲であり、チャートやグラフを14年間見たことがありません(でも、「ビジョン」を持っています)。彼は、SAS Graphics Accelerator を使用して、データビジュアライゼーションとアナリティクスを視覚障害者にも利用可能にした非常に重要な彼の仕事をデモンストレーションしました。このテクノロジーは、SASのアナリティクス・ビジュアライゼーションを話し言葉と音に変換します。結果は、データを音で表現することで、視覚障害者がデータの様子を『見る』ことができるようになっています。聴衆みんなで目を閉じて、確かにデータが上昇トレンドにあることを確認しました。単にデータの値を読み上げるだけでなく、グラフの右肩上がり具合を音階で表現されることで、まさに『耳で見る』ことができるようになりました。『私たちは皆、それぞれ自分なりの世の中への貢献の仕方があります。データビジュアライゼーションを誰にでも利用可能にすることが、私の役目です』とサマーズは締めくくりました。筆者はこの数日後、SAS本社のCaryの彼の勤務するオフィスのカフェテリアでばったり出会い、しばし歓談しました。やはり、このプレゼンはとても緊張したらしいです。 SASは従来より、このような『ユーザー補助機能』をソフトウェア機能として提供してきています。グラフ上の数字の読み上げ機能なども数年前から実装されています。現在どのような製品でどのような対応がされているかはこちら「Accessibility at SAS」にまとまっているのでご参照ください。今後は、コグニティブ技術+アナリティクスという領域でさらなる進化をしていくことが考えられています。 「エッジ・アナリティクス」 - SAS Event Stream Processing R&Dのシニアディレクターである、ジェリーは、Event Stream ProcessingとInternet of Things  の担当であり、彼の車のナンバープレートを、「ESP&IOT」にしてしまうくらい(ビデオにも写っています)彼にとって、ESPは彼の一部であり、ライフワークです。彼は壇上で、自動車業界においてESPがどのように中央のサーバー上や、エッジアナリティクスといわれるデータの発生源で、イベントストリームデータを分析するかをデモンストレーションしました。彼は、コネクテッド・カーに関するユースケースを取り上げ、実際に道路温度が0度以下になったポイントで警告を表示することができることを示しました。彼曰く、『ストリーミングアナリティクスは単に効率を上げるだけではなく、世の中をより安全な場所に変えることができるのです』 Enterprise GuideでDATA Stepデバッガーを使用することで、生産性を向上する ケイシー・スミスはEnterprise Guideの新機能である、DATA Stepデバッガーについて紹介しました。スミスの母親は30年以上もノースカロライナ州立大学でSASを教える教授であり、スミスは幼い頃母親からSASを教わっています。プログラムのバグを修正することはとても時間のかかることであり、またイライラする作業でもあります。そのデバッグ作業をとても簡単にできることを彼はデモンストレーションで披露しました。この機能を開発した理由を彼は次のように述べています。『現実の顧客は、現実の課題を解決している。我々はそれをサポートしたい。』 データ分析においてなによりも大事なのは探索やモデリングのためのデータ準備のフェーズです。特に昨今、正規化された基幹システムからのデータだけではなく、様々な非定型のデータを効率的に正確に結合・整形する必要性が高まっています。そのようなデータに対して(異なる目的のために考案された)SQL一辺倒の利用では非常に非効率です。様々なプログラミング言語を経験した筆者の意見としては、そのようなデータ準備には専用に考案されたSASのData Stepの利用は最も優れた選択の一つだと感じています。それでも細かなデータ加工には複雑なIF条件文のネストなどにおける困難さはつきものです。そのようなデータ加工をステップ・バイ・ステップでデバッグできる、このData Stepデバッガーはとても便利ですので、是非、試してみてください。 FCAAバスケットボールのデータを使用しFactorization Machineで試合結果を予測する ジョージ・シルバは、統計家かつソフトウェア開発者であり、彼は機械学習に携わる自分の仕事を(顧客が価値を出すまでは)まるで赤ちゃんのようだと表現しています。シルバのプレゼンはアマゾン社のインテリジェントなパーソナルアシスタントである、Alexaで行われました。シルバが用意したデモを使用して、CTOのシャーベンバーガーが音声で命令をAlexaに出し、NCAAバスケットボールのデータを探索する様子を披露しました。シルバは試合結果を予測するのにファクタライゼーションモデルという機械学習手法を使用しました。ファクタライゼーション・マシンについては、SGF2017のこちらのセッションが参考になると思います。「Factorization Machines: A New Tool for Sparse Data」

Data for Good | SAS Events | Students & Educators
小林 泉 0
SGF2017 レポート - 初日、オープニングセッション他

今年のSAS Global Forum は、USのフロリダ州オーランドで開催されました。 例年同様日曜日スタート 従来と異なるのは、パートナー様向けの、SAS Partner Forum 2017 がSGFと同時開催されたことです。日本から参加されたSASジャパンのパートナー企業様は、前日夜のレセプションから始まり、イベント週間の先頭をきって、日曜日朝8:30からのSAS Executiveも登壇するセッションに参加いただき、みっちり午後までのスケジュールを、忙しくこなして頂きました。その様子は、こちらのSAS Partner Blogよりビデオでご覧いただけます。お忙しい中を時間を割いて日本からご参加いただくパートナー企業様が年々、増加しており、今年もセッション他、有意義なコミュニケーションの時間を過ごさせていただきました。誠にありがとうございます。多種多様なスキル・経験をお持ちのパートナー企業皆様に囲まれ、今後のSASビジネスに非常に心強さを感じました。 明日のリーダーを育成する さて、SAS Global Forum、通称SGFは、初日の夜のOpening Sessionからスタートなのですが、その前に、前述のパートナー様向けのイベントだけでなく、毎年最も重要なイベントの一つであるAcademic Summitが行われます。これは、SASが重要視することの一つである、人材育成・教育への投資、そしてその結果、社会へ優秀なデータサイエンティストを生み出すための活動であるAcademic Programの年次の総会のようなものです。教育関係者だけではなく企業関係者も参加することで、実務で役立つ教育の促進と人材の確保というエコシステムを形成しています。これを特徴付ける数字としては、このイベントのスポンサーを見てもわかります。 通常のパートナー企業様のスポンサーが29社 アカデミックのスポンサーは、16教育機関。 この数から見ても、本イベントを大学などの教育機関が重要視していて、教育と企業との連携が盛んであることが伺えると思います。 SAS Global Forumそのものが、教育機関と民間企業の接点の場であり、学生の発表や表彰、そして参加大学の企業へのアピールの場にもなっています。さて、Academic Summitのアジェンダを見てみましょう。 ネットワーキング SAS担当エグゼクティブの挨拶 スカラシップ受賞者の紹介 Student Ambassador Program受賞者の紹介 Student Symposiumファイナリストの発表 ゲスト講演 Student Symposium(SGF2017で実施されるコンペティション)の優勝チームである、Kennesaw State University の "The Three Amigos"は、「銀行の定期預金契約者の決定要因をロジスティック回帰と決定木で分析」したものでした。その他Student Symposiumの発表は以下のようなものがありました。 Dataninjas: Modeling Life Insurance Risk (Kennesaw State University)

Programming Tips
小林 泉 0
グラフ理論②:PythonとSAS Viyaでグラフ分析

はじめに 以前このブログ「グラフ理論入門:ソーシャル・ネットワークの分析例」でもご紹介しましたが。SASは従来からネットワーク分析(グラフ分析)をサポートしています。ネットワーク分析の基本的なことはまず上記のブログをご参照ください。 今回は、プログラミングスキルがあるアプリケーション開発者やデータサイエンティスト向けです。Pythonからネイティブに利用できるSAS Viyaを使用して、ネットワーク分析をする簡単な利用例をご紹介します。 2016夏にリリースされたSAS Viyaは、アナリティクスに必要な全てのアルゴリズムを提供しつつ、かつオープンさを兼ね備えた全く新しいプラットフォームです。これにより、SAS Viyaをアプリケーションにシームレスに組み込むことや、どのようなプログラミング言語からでもアナリティクス・モデルの開発が可能になりました。今回は、SASのパワフルなアナリティクス機能にアクセスするために、そのオープンさがどのように役立つののかにフォーカスします。 前提条件 SAS Viyaは、REST APIにも対応しているため、それを使用しても良いのですが、一般的には、使い慣れたプログラミング言語を使用する方が効率が良いと考えられるため、今回は、データサイエンティストや大学での利用者が多い、Pythonを使用したいと思います。 デモ環境としては、Pythonコードを実行できるだけでなく書式付テキストも付記できる、Webベースのオープンな対話型環境であるJupyter Notebookを使用します。Jupyterをインストールした後に、SAS Scripting Wrapper for Analytics Transfer(SWAT)をインストールする必要があります。このパッケージは、SAS Cloud Analytic Services(CAS)に接続するためのPythonクライアントです。これにより、Pythonから全てのCASアクションを実行することが可能となります。SWATパッケージの情報やJupyter Notebookのサンプルはこちらをごらんください。https://github.com/sassoftware SAS Cloud Analytic Services(CAS)にアクセスする SAS Viyaのコアにあるのは、SAS Cloud Analytic Services(CAS: キャス)というアナリティクスの実行エンジンです。"CASアクション"という個々の機能を実行したり、データにアクセスしたりするためには、CASに接続するためのセッションが必要となります。セッションからCASへの接続には、バイナリ接続(非常に大きなデータ転送の場合にはこちらが推奨です)あるいは、HTTP/HTTPS経由のREST API接続のどちらかを使用することができます。今回は、デモンストレーション目的で非常に小さなデータを扱うので、RESTプロトコルを使用します。SAS ViyaとCASのより詳細な情報はこちらのオンラインドキュメントをごらんください。 多くのプログラミングと同様、まずは使用するライブラリの定義からです。Pythonでは、importステートメントを使用します。非常に良く使われるmatplotlibライブラリに加えて、ネットワークをビジュアライズするためのnetworkxも使用します。 from swat import * import numpy as np import pandas as pd import matplotlib.pyplot as

Artificial Intelligence | Machine Learning
小林 泉 1
ディープ・ラーニングとAI

この写真に写っているのは何でしょうか?きっと皆さん考えることもなく瞬時に家だと分かるでしょう。なぜなら、何百、何千という種類の家を見てきた経験から、家を構成する特徴(屋根、ドア、窓、玄関前の階段など)を脳が認識できるようになっているからです。そのため、たとえ家の一部分しか写っていない写真でも、自分が何を見ているかが瞬時に分かります。家を認識する方法を学習済みなのです。 多くの皆さんは、この話題ですぐに、「あぁ、ディープ・ラーニングの話だな」とピンとくることでしょう。今回は、昨今メディアを賑わせ、誤解も多くある、ディープ・ラーニングとAI(人工知能)の理解について、簡単に頭を整理してみましょう。 ディープ・ラーニングとは、家の画像の認識、分類、説明など人間が行うようなタスクを実行できるようにコンピューターに学習させることに特化した、人工知能(研究)の一領域です。しかし、ビジネスにおけるディープ・ラーニングの手法と応用はどのような状況にあり、アナリティクスの将来にディープ・ラーニングはどのようなメリットをもたらしてくれるのでしょうか? ディープ・ラーニングとその仕組みについて、SASのアナリティック・サーバー研究開発担当副社長であるオリバー・シャーベンバーガー(Oliver Schabenberger)に話を聞きました。 ディープ・ラーニングをどのように定義していますか? 【オリバー・シャーベンバーガー】ディープ・ラーニング手法は機械学習の一種であり、いわゆる「弱いAI(人工知能)」の一形態と考えられます。「弱いAI」とはAI分野の専門表現で、人間の脳と同じように動作する思考マシンの作成を前提としていないことを意味します。その代わり、「ディープ・ラーニング手法は人間が行うような特定のタスクをインテリジェントな方法で実行することができる」という前提に立っています。そして私たちは今、こうしたインテリジェンス強化システムが人間よりも優れた正確性、安定性、反復性をもってタスクを実行できるケースが多々あることを明らかにしつつあります。 ディープ・ラーニングは機械学習とビッグデータが重なり合っている領域だという人もいますが、それだけではありません。「ディープ」および「ラーニング」という側面の意味を詳しく考えてみましょう。 ディープ・ラーニングの1つの側面(=ディープ)は、ニューラル・ネットワーク・モデルを「より深く」適用することによってアナリティクスの精度が高まる、ということを指しています。学習(ラーニング)システムは、そのモデルあるいは環境を階層構造として表現します。それぞれの層(レイヤー)は、例えば画像における規則性の形態(形状、パターン、境界線など)のように、課題に関する異なるタイプの情報を表していると考えることができます。こうした階層構造とニューロン間の情報フローという2つの特長から、ニューラル・ネットワークは学習システムを構築するための標準ツールとなっています。コンピューティングとアルゴリズムの高度化により、現在では、ほんの数年前と比べても、より多くの層からなるニューラルネットを構築できます。ディープ・ニューラル・ネットワークは多くの学習手法の土台となる概念です。 第2の側面(=ラーニング)は、より多くのデータを利用する際のパフォーマンス(スピード、精度、一般化可能性)の改善という意味においても、システムが「学習」を行うことを指しています。この側面は、パターンの認識、テキストの読解、音声の理解、事象や物体の分類など、「これまで人間が学習してきたタスクを機械が実行する」という応用用途も指し示しています。システムは課題を解決するのではなく、課題に関してトレーニングを受けるのです。 ディープ・ラーニングはどのような点でAI(人工知能)なのでしょうか? 【シャーベンバーガー】多くの人々は「人工知能」という言葉を聞いたとたん、機械が人間に取って代わるのではないかと不安になりますが、ディープ・ラーニングの場合、そうはなりません。コンピューターは依然として「石頭」 です。あくまで、パターン認識、音声認識、質問への回答など、人間が行うようなタスクを機械独自の方法で疑似的に実行しているにすぎません。また、学習した能力を別のタスクに一般化することもできません。例えば、最近、数回の対局で世界最強の囲碁棋士に勝利したAlphaGo(アルファ碁)は、Googleの子会社であるDeepMindが開発した驚異的なディープ・ラーニング・アルゴリズムですが、画像を分類したり、洗浄機の中身を食器棚に片づけたりといった用途には役立ちません。それでも、囲碁に関しては驚異的なプレイヤーなのです。 しかしながら、人間の大脳新皮質が担っている機能に関する最新の理解とディープ・ニューラル・ネットワーク手法との間には、興味深い類似点があります。新皮質は多くの認知能力を担っていますが、そこでは階層構造を通じて入力信号が伝播されており、それらの層がモノの表現を生み出す規則性を発見していることが分かってきたのです。 [Tweet "コンピューターは依然として「石頭」 です。あくまで、パターン認識など、人間が行うようなタスクを機械独自の方法で疑似的に実行しているにすぎません。"] 同様に、ニューラル・ネットワーク・アルゴリズムもレイヤーとニューロンで編成されます。しかし、「ニューラルネットがコグニティブ・コンピューティングの世界で有用性が証明されてきたのは、それが人間の脳を模倣しているから」というよりは、「過去のアプローチとは異なる方法、すなわち、我々人間の大脳新皮質とは異なる方法でデータを処理するからこそ、ニューラルネットは成功を収めてきている」と言うべきではないかと私は思います。 ディープ・ラーニングの理解しやすい例を示していただけますか? 【シャーベンバーガー】ディープ・ラーニングと標準的なアナリティクス手法の違いが分かる優れた例として、 Atari社のBreakoutというゲーム(筆者と同年代以上の方であればご存知のはずの「ブロックくずし」のオリジナル作品らしいです)をプレイするタスクを考えてみましょう。最初に、考えられる選択肢について議論し、それから実際の動作をYouTubeのビデオでご覧いただきます。 1つの選択肢は、ブレイクアウトの遊び方を知っているゲームボットを書くことです。パドル(プレイヤーが水平に移動させるバー)とその動き方、ボール、ボールがパドルや壁やブロックにぶつかったときの跳ね返り方のルールなどの要素をプログラミングします。つまり、ゲームのロジックと戦略を、ソフトウェア自体に組み込むのです。ソフトウェアをコンパイルしたら、導入して実行し、ゲームボットがどのようにプレイするかを観察します。ゲームプレイ能力の改良が必要な場合は、コード改変、コンパイル、導入、実行、テストというサイクルを繰り返していきます。 もう1つの選択肢は、「深層強化学習」と呼ばれるディープ・ラーニング手法を用いて課題を解決する方法です。ディープ・ニューラル・ネットワークでゲーム環境を表現し、この環境内で動く方法、アクションの取り方、そのアクションを取ることで得られる報酬をプログラムに指示します。つまり、報酬はゲーム画面の上部に表示されるスコアであり、アクションはパドルを動かすことであるとコンピューターに伝えます。コンピューターが知る必要があるのは、これが全てです。実行が始まるとコンピューターは、パドルを動かし、スコアがどうなるかを読み取ります。この選択肢の場合、ゲームをプレイするというタスクは、「ゲームの現在の状態と、取るべきアクション(パドルの動かし方)の2つを変数として、将来の報酬を最大化せよ」という最適化課題へと変わります。 それでは、Google DeepMind社が実装したAtariブレイクアウトの深層強化学習をビデオでご覧ください。 このソフトウェアは、壁やブロック、さらにはボールの存在さえも知りません。知っているのは、自分で動かせるパドルがあることと、少しでも高いスコアを獲得するという目的だけです。それでも、学習開始から2時間後には、熟練者並みにプレイしています。誰もコンパイル、導入、実行を繰り返す必要はありませんでした。4時間後には、ゲームをクリアできるようになっています。特定の領域に関する知識は一切投入されていません。 ディープ・ラーニングについて詳しく学ぶにはどうすればよいでしょうか? 【シャーベンバーガー】私はつい最近、SASのサイトにディープ・ラーニングとは? という新しい記事を寄稿しました。ディープ・ラーニングが重要な理由と動作の仕組みについて、幅広い情報を盛り込んであります。また、ディープ・ラーニングに関するWebセミナーや、ディープ・ラーニングの現状についてデータ・サイエンティストが対談しているビデオへのリンクも用意しました。ディープ・ラーニングについて同僚に説明する際もお役に立つと思います。 いかがでしたでしょうか。ディープ・ラーニングとAIの位置づけが少しクリアになったのではないでしょうか。 ゲームと言えば、任天堂の「スーパーマリオ」というゲームを人工知能でクリアしてしまおうという取り組みもあります。インターネット上で検索すると色々情報が見つかるので調べてみてください。学習過程の動画を見ていて、筆者が始めてこのゲームをやったときの、最初の頃まだうまく操作できてないときの動かし方(右に無謀に突き進んでは行き過ぎてやられる)にそっくりだなと感じました。 データマイニング、機械学習、ディープ・ラーニングについて、弊社日本語サイトを更新したので是非ご活用ください。これらのテクノロジーの実用についてのより詳細な情報をご提供しています。

Learn SAS | Programming Tips
小林 泉 0
Jupyter and SAS

Jupyter Notebookとは? Jupyter Notebookとは、ノートブック形式のインターフェースでコードの開発(記述や実行)ができるWebアプリケーションです。約50ほどの世の中のプログラミング言語に対応しています。 http://jupyter.org/ Jupyter and SASとは? Jupyterの環境に、オープンソースのSAS kernel for Jupyterを追加することで、Jupyter Notebook上でSAS言語を使用(シンタックスのハイライト、実行、ログの確認、アウトプットの表示)することが可能になります。 Jupyter Notebookでは、作業の内容は、ノートブック(*.ipynb)形式で保存されます。Jupyter Notebookでは、SASコードや実行結果だけでなく、リッチテキスト形式で文章を記載することが可能です。ノートブックはHTML形式や、PDF、あるいはSASコードとして出力することも可能です。 SAS 9.4とLinux環境があれば、ほとんどの方が導入・ご利用いただくことが可能です。 Jupyter Notebookを開くと、Notebookダッシュボードが表示されます。ここに、ノートブックや他のファイルの一覧が表示されます。     SAS University Editionでも使えますか? 2016の7月から、Jupyter NotebookとSAS Kernel for JupyterがSAS University EditionのvAppに含まれることになりました。従来、SAS University Editionのインターフェースは、SAS Studioのみでしたが、今後はJupyter Notebookもご利用いただくことが可能となります。 https://support.sas.com/software/products/university-edition/faq/jn_whatis.htm  

1 3 4 5 6 7