In the digital era data analysis is not even a necessity, but an everyday task of any company. The effectiveness and efficiency of decision-making processes has a key influence on whether the organization is successful or fails. The use of advanced analytics in order to obtain the best possible recommendations
Author
At this stage, our organization has defined business objectives for Data Governance programme and shares business term definitions which it uses. This logical area of data and information management has been supplemented with a bridge to technical metadata – in the previous step we obtained one place, which combines the
At this stage our organization has already defined the business objectives for Data Governance programme (step 0) and started to manage business terms, as described in step 1. Step 2: tracking data flow in organization Data Governance is not only related to understanding the data – it also focuses on
Having introduced the term of Data Governance and defined business objectives, we can start to fulfill the first tasks within Data Governance programme construction. Step 1: business meaning of data While conducting their activity, organizations use many industry-specific terms. The mere definition of who a customer is for the company
21st century is the era of information revolution, when mass exploitation of data is a part of daily routine. Nowadays any business requires that the information driving the decision-making process be of a high quality, timely delivered and, above all, reliable and that it ensure security of the activity conducted.
Na tym etapie nasza organizacja posiada określone dla programu Data Governance cele biznesowe oraz zarządza i współdzieli definicje pojęć biznesowych, którymi się posługuje. Ten logiczny obszar zarządzania danymi i informacją uzupełniony został o pomost do metadanych technicznych - w poprzednim kroku uzyskaliśmy jedno miejsce łączące informacje o technicznym przepływie danych w organizacji
Na tym etapie nasza organizacja posiada już określone cele biznesowe dla programu Data Governance (krok 0) oraz rozpoczęła zarządzanie pojęciami biznesowymi, które opisywał krok 1. Krok 2: śledzenie przepływu danych w organizacji Data Governance to nie tylko rozumienie znaczenia danych - to także świadomość, w jaki sposób te dane i
Po wprowadzeniu w zagadnienia Data Governance oraz określeniu celów biznesowych możemy przystąpić do realizacji pierwszych zadań w budowie programu Data Governance. Krok 1: biznesowe znaczenie danych Organizacje w prowadzeniu swojej działalności posługują się wieloma, specyficznymi np. dla branży, pojęciami. Samo zdefiniowanie kto dla firmy jest klientem jest niejednoznaczne w zależności
XXI wiek to rewolucja informacyjna, gdzie wykorzystywanie danych na masową skalę jest codziennością. Każda działalność biznesowa wymaga dzisiaj, aby informacje wspierające podejmowanie decyzji były wysokiej jakości, dostarczane na czas, i co najważniejsze, były pewne i gwarantowały bezpieczeństwo prowadzonej działalności biznesowej. Rozwój ekosystemów analitycznych, oferowanych przez firmy innowacyjnych produktów i usług
W cyfrowych czasach analiza danych jest już nie tyle koniecznością, ale codziennym zadaniem każdej firmy. Skuteczność i prawność procesów podejmowania decyzji ma kluczowy wpływ na to, czy organizacja odniesie sukces, czy porażkę. Wykorzystanie zaawansowanej analityki w celu uzyskania jak najlepszych rekomendacji w procesach biznesowych stało się nowym i bardzo skutecznym narzędziem
As we enter the era of “everything connected,” we cannot forget that gathering data is not enough. We need to process that data to gain new knowledge and build our competitive advantage. The Internet of Things is not just a consumer thing – it also makes our businesses more intelligent. Whenever
Data governance and data virtualization can become powerful allies. The word governance is not be understood here as a law but more as a support and vision for business analytics application. Our governance processes must become agile the same way our business is transforming. Data virtualization, being a very versatile
Data governance and data virtualization can become powerful allies. The word governance is not be understood here as a law but more as a support and vision for business analytics application. Our governance processes must become agile the same way our business is transforming. Data virtualization, being a very versatile