Tag: SAS Global Forum

SAS Events
Amanda Farnsworth 0
Bringing teams together

Editor's note: Amanda Farnsworth is Head of Visual Journalism at BBC News and a featured speaker at SAS Global Forum 2017, April 2-5, 2017 in Orlando. There was a best selling book some years ago called “Men are from Mars and Women are from Venus.” It’s a phrase I thought

SAS Events
小林 泉 0
SGF2016: Hadoop関連セッション・論文(ユーザー・パートナー編)

SAS Global Forum 2016のユーザープログラムでの発表論文を、”Hadoop”というキーワードで検索し、SAS on Hadoopソリューション関連の論文を集めてみました。企業の競争戦略と密接に結びついているHadoop関連の事例はなかなか公開されないのですが、いくつかありました。これ以外にも、Hadoop事例を話すセッションがいくつかありました。 SAS Global Forum 2016 Proceedings – ユーザーおよびパートナーによるHadoop 関連の講演 Analytics and Data Management in a Box: Dramatically Increase Performance Teradata様が提供するHadoopの話です Nine Frequently Asked Questions about Getting Started with SAS® Visual Analytics インプリメンテーション・パートナーがVA & Hadoopの使用法、導入方法、管理方法についてエンドユーザーから良く受ける質問について触れられています。 Making It Happen: A novel way to save taxpayer dollars by

SAS Events
小林 泉 0
SGF2016: Hadoop関連セッション・論文(SAS社員編)

SAS Global Forum 2016のユーザープログラムでの発表論文を、”Hadoop”というキーワードで検索し、SAS on Hadoop関連の発表・論文を集めてみました。ざっと見たところ、SAS on Hadoopソリューションにまつわる全ての話題が網羅されていると感じます。 SAS Global Forum 2016 Proceedings – Hadoop 関連のSAS社員による講演・論文 SAS® and Hadoop: The 5th Annual State of the Union 9.4M3で実現しているSASとHadoopの連携について概説。2014年には、SAS Forum Japanでも登壇した、Paul Kentが語ります。   Introducing - SAS® Grid Manager for Hadoop Grid ManagerのHadoop版の話です。 Deep Dive with SAS® Studio into SAS® Grid Manager 9.4 SAS

Machine Learning | SAS Events
小林 泉 0
SGF2016: Machine Learning関連セッション・論文(ユーザー・パートナー編)

SAS Global Forum 2016のユーザープログラムでの発表論文を、”Machine Learning”というキーワードで検索し、機械学習関連の論文を集めてみました。 SAS Global Forum 2016 Proceedings - Machine Learning 関連のユーザーやパートナーによる講演・論文 Turning Machine Learning Into Actionable Insights 機械学習=意思決定プロセスの自動化     PROC IMSTAT Boosts Knowledge Discovery in Big Databases (KDBD) in a Pharmaceutical Company 日本の塩野義製薬様の機械学習への取り組み Diagnosing Obstructive Sleep Apnea: Using Predictive Analytics Based on Wavelet Analysis in SAS/IML®

Machine Learning | SAS Events
小林 泉 0
SGF2016: Machine Learning関連セッション・論文(SAS社員編)

SAS Global Forum 2016のユーザープログラムでの発表論文を、"Machine Learning"というキーワードで検索し、機械学習関連の論文を集めてみました。 SAS Global Forum 2016 Proceedings - Machine Learning 関連のSAS社員による講演・論文 Best Practices for Machine Learning Applications 機械学習の実践において一般的に遭遇する課題と解決のためのガイドラインを提供します。機械学習について初心者の方は、こちらもご活用ください⇒SASジャパン機械学習ページへ An Efficient Pattern Recognition Approach with Applications BASE SASおよびSAS Enterprise Minerを使用した、教師あり/なしタイプのパターン認識(画像認識)テクニックの紹介。パターン認識に関しては、この発表者の一人、Patrick Hallがウェビナーで他の例で解説しておりますので、そちらもあわせてご覧ください⇒「機械学習とディープ・ラーニング」ウェビナー Mass-Scale, Automated Machine Learning and Model Deployment Using SAS® Factory Miner and SAS® Decision Manager よりマイクロセグメント化するビジネス課題の解決のための自動化された機械学習製品の紹介 Streaming

SAS Events
小林 泉 0
SAS Global Forum 2016 開催報告②: Tech Connection SessionでSAS新製品をより詳しく知る

オープニングセッションの翌日4/19の朝からは、Ben Casnocha(シリコンバレーで活躍する企業家で著作家)のKeynote Sessionに続き、例年通り、Tech Connectionというセッションが実施され、SAS本社のR&D部門や製品管理部門による新製品紹介とデモンストレーションが行われました。 このセッションでは、実際の企業・組織でよくみかけるシナリオとジレンマを例にとり、SAS Viyaがどのように役に立つのかを紹介しました。データ・サイエンティストでも、統計家でも、あるいはITアナリストでも、ビジネスアナリストでも、そして作業担当者であっても、管理者であっても、それぞれの立場・役割の方に、SAS Viyaが価値をもたらしてくれることをご理解いただけると思います。 SAS® Cloud Analytics Webブラウザからアナリティクス・アプリケーションにアクセスして、予測モデルをすぐに作成することが可能 「組み込みアナリティクス」として、どのような言語からでもSASのAPIにアクセスして既存のビジネス・アプリケーションやビジネス・プロセスに組み込むことができる セットアップ不要なため、S/Wのインストールやクラスターの準備をする必要はない。ユーザーは、セキュアなクラウドベースの環境で、分析をし結果を保存することができる 当日のデモンストレーション:   SAS® Visual Analytics SAS Viyaに対応したSAS Visual Analytics最新バージョン データ探索機能(Visual Analytics Explorer)、レポート作成機能(Visual Analytics Designer)、予測モデリング機能(Visual Statistics)が、完全に統合され単一インターフェースになることにより、すべてをシームレスに利用することが可能 ユーザーインターフェースは、HTML5で作り直された 当日のデモンストレーション: SAS® Customer Intelligence 360 "役割に応じた"アナリティクス Software as a Serviceクラウド型 オムニチャネル:包括的なカスタマーインテリジェンスHub 当日のデモンストレーション: SAS® Visual Investigator 脅威の検出は今や自動化することが可能。ウェブサイトやソーシャルメディア、様々なデータベースから情報を収集し、それぞれ異なるデータソース間の関連性を見つけ出す アナリストが、効率的で効果的な調査活動を行うことが可能 不正検知、公共のセキュリティなど様々な課題に応じた利用が可能 当日のデモンストレーション:   SAS®

Customer Intelligence | Internet of Things | SAS Events
小林 泉 0
SAS Global Forum 2016 開催報告①: Opening Sessionで革新的な新アーキテクチャを発表

また、SAS Global Forumの季節が巡ってきました。このBlogの最初のエントリーは、昨年2015年のSAS Global Forumのご紹介でしたので、Blog開始から早一年がたったということです。いつもご愛読ありがとうございます。このBlogを楽しんでいただいている方々もいらっしゃるようで、嬉しく思います。今年も何回かに分けて、このSAS Global Forum 2016の模様をご紹介をしたいと思います。 今年は、米国ラスベガスで現地時間の4/18-4/21に実施されました。約5,000人のユーザー様やパートナー様が集まる一大イベントです。4/18夜のオープニングセッションに先駆けて、メディア向けの説明会も行われました。 メディア向け説明会が行われたのは、SAS本社 世界の働きたい会社ベスト10に入るSAS、プライベートカンパニーだからこそできる環境づくり(EnterpriseZine) サッカー場やプール、保育所も完備のSAS本社に潜入--プライベートジェットも(ZDNet Japan) SAS® Viya™ - 今年のイベントにおける最大のニュース 去る2016/4/18に行われたSAS Global Forum 2016のオープニングセッションでは、いくつかの革新的なテクノロジーの発表が行われました。例年と少し進行が異なり、オープニングセッションの後半でSASのCEOである、Jim GoodnightからSASの新しいアーキテクチャについての発表があり、会場がどよめきました。 プレスリリース:SAS、「SAS® Viya™」を発表:オープンでクラウド対応したハイパフォーマンス・アナリティクスとビジュアライゼーションのための次世代アーキテクチャ   Jim Goodnightから、アナリティクスをさらに使いやすくし、すべての人が利用しやすいように大きく進化した、SAS Viyaという新しいアーキテクチャの発表を行いました。また、すでに顧客の多くが使用しているSAS9環境と組み合わせてこのSAS Viyaを利用することも可能であるとも話しました。 続けて、SAS Viyaの開発をリードしてきた、Analytic Server Research and DevelopmentのVice Presidentである、Oliver Schabenbergerからこの新しいクラウドベースのアナリティクス&データマネージメントアーキテクチャの概要について説明がありました。 Schabenberger 曰く、 『SASのお客様のアナリティクスへの取り組みや活用方法は様々で、スモールデータからビッグデータ、簡単なアナリティクスから難しい機械学習課題の解決まで非常に多岐に渡ります。ストリーミングデータや蓄積したビッグデータ、構造化データや非構造化データの利用、さらには、個人での利用から数百ユーザーの同時接続利用、クラウドであったりオンプレミスであったり、利用者は、データサイエンティストであったり、ビジネスユーザーであったりなど、様々です。』 『そこで、SASは、データサイエンティストかビジネスアナリストかに関わらず、全ての人が利用することのできる、最新の統合アナリティクス環境を開発しました。SAS Viyaの優れているところは、統合され、オープンな、簡単だが非常にパワフルであり、クラウド環境に適しており、マルチ・クラウドアーキテクチャである点です。』 メディア各社の記事もご参照ください。 アナリティクス一筋40年、SASから生まれた新たなプラットフォームの「Viya」とは(EnterpriseZine) ビジネスアナリティクス、機械学習の進化とSASの新アーキテクチャ(@IT)   SAS Viyaについては、今後もこのblog上でも継続的に情報をご提供していきます。 SAS Customer

Elizabeth Bautista 0
Así se vivió SAS Global Forum 2016

Cada año SAS reúne a miles de usuarios y colaboradores de diferentes países,  para hablar sobre tendencias, innovación y tecnología, con la finalidad de exponer a los equipos a toda esta información, capacitarlos y así poder incrementar su desempeño, para generar metodologías internas cada vez más interesantes y adaptadas a

1 4 5 6 7 8 19