Neural networks, particularly convolutional neural networks, have become more and more popular in the field of computer vision. What are convolutional neural networks and what are they used for?
Neural networks, particularly convolutional neural networks, have become more and more popular in the field of computer vision. What are convolutional neural networks and what are they used for?
SAS Viyaの分析機能をPythonから利用するためのハイレベルAPIパッケージであるDLPyでは、kerasと同等の簡潔なコーディングで、複雑な画像処理やディープラーニングを実行することができます。 そして、DLPyでは、kerasと同様に、2つの手法でディープラーニングのモデルを構築することができます。 Sequential modelとfunctional API modelです。 Sequentialとは、その名の通り、レイヤーを順序通りに積み重ねて、順序通りに実行していくモデルです。 以下は、DLPyを用いて、PythonからSAS Viyaのディープラーニング機能を使用して画像分類向けsequential modelのネットワークを定義している例です。 In [10]: model1 = Sequential(sess, model_table='Simple_CNN') model1.add(InputLayer(3, 224, 224, offsets=tr_img.channel_means)) model1.add(Conv2d(8, 7)) model1.add(Pooling(2)) model1.add(Conv2d(8, 7)) model1.add(Pooling(2)) model1.add(Dense(16)) model1.add(OutputLayer(act='softmax', n=2)) In [11]: model1.print_summary() Out[11]: In [12]: model1.plot_network() Out[12]: 一方、functional APIは、sequentialでは、表現することが難しい、より複雑な構造のモデルを構築する際に利用されます。 以下は、kerasの公式サイトに記載されている文面です。 “functional APIは,複数の出力があるモデルや有向非巡回グラフ,共有レイヤーを持ったモデルなどの複雑なモデルを定義するためのインターフェースです.” そして、DLPyでは、kerasと同様にsequential modelだけでなく、functional API modelの構築も可能になっています。 以下はその一例として、複数の入力と出力を持つような画像分類のためのディープラーニングモデルのネットワーク例です。 まず、テンソルオブジェクトを返すInput()によって、2つのテンソル、グレースケール画像とカラー(RGB)画像、を定義します。 グレースケール画像は2つの畳み込み層に送り込まれます。カラー画像はそれらとは別の畳み込み層に送り込まれます。
Computer vision is one of the most sought-after artificial intelligence (AI) applications today, finding a wide variety of use cases in image recognition, object detection, biomedical assessment, and more. SAS supports a diverse set of AI and deep learning capabilities that can be used in many of these applications. One