"CAS Stored Process" with my Favorite Action Hero runCasl

0

In his article How to use CASL to develop and work with user-defined CAS actions, Brian Kinnebrew defines CASL as "a language specification used by the SAS client to interact with and provide easy access to Cloud Analytic Services (CAS). CASL is a statement-based scripting language with many uses and strengths." I can't come up with a better definition, so if you'd like to learn more about the basics of CASL, I encourage you to read Brian's post.

In a SAS Stored Process (or any traditional SAS program) the code has multiple DATA steps and procedures with a good dose of macros.

Over the last couple of years, the focus of my projects is the use of CAS actions with no traditional procedures in the mix. Most of these involved web applications calling multiple CAS actions. My initial approach was to make multiple http calls - one per action. This could get tedious.

Then I met my action hero: sccasl.runCasl.

My favorite SAS CASL action
This action executes a CASL "script" on the CAS server analogous to executing a SAS Stored Process. Running a CASL program with a mix of CAS actions and CASL statements on the CAS server has these benefits:

  1. Reduced the number of http calls to the server
  2. The client-side code is much easier to reason
  3. The returned values can be a dictionary that is suited for further consumption by the client, simplifying the client code

My personal name for these scripts is "CAS stored process".

Where art thou Macro?

In many applications, user input is passed to the code running on the server. In a SAS Stored Process, macros pass the parameters. CASL has no macros. My initial approaches to passing parameters to CASL programs were:

  1. Generate the final CASL program in JavaScript with the user input values inserted into the code. Sample code is available here.
    • Drawback: Debugging the code in SAS Studio requires a cut-and-paste of the generated code into SAS Studio.
  2. Load the data into a CAS table using table.upload action for programs needing an input table. Sample code is available here.
    • Drawback: This requires an additional http call to the server.

In developing the GraphQL approach to writing applications - GraphQL and SAS Viya applications - a good match - I addressed the two drawbacks listed above by creating two functions and put them in my utility belt.

    It's a bird, it's a plane, it's SAS Superfriend functions!
  • jsonToDict.js - generate a string having the CASL dictionary version of a JavaScript object
  • argsToTable - create a CAS table from a dictionary

The remainder of this article discusses these two functions. To demonstrate the functions' usage, I use code listings from the scoring example, covered in the GraphQL example.

The jsonToDict function

The result of this function produces a string with CASL dictionary suitable for inclusion in CASL code.

Function definition

jsonToDict ⇒ string

Returnsstring - returns the string containing the CASL dictionary

Param Type Description
obj object the JavScript object of interest
name string the name to assign to the dictionary

 

Example function code

The code below outlines the jsonToDict function usage.

obj = {x:1, b:2, c:['a', 'b']};
let r = jsonToDict(obj, '_appEnv_');
The result is:
r = `_appEnv_ = {x=1, b=2, c={"a", "b"}};`;

The following lists the input parameters passed to the CASL code for scoring.

let input = {
        JOB    : 'J1',
        CLAGE  : 100, 
        CLNO   : 20, 
        DEBTINC: 20, 
        DELINQ : 2, 
        DEROG  : 0, 
        MORTDUE: 4000, 
        NINQ   : 1,
        YOJ    : 10,
        LOAN: 1000,
        ASSET: 100000
    };

Below is the Javascript code and the result.

let _args_ = jsonToDict(input, '_args_');
//resulting in:
 
args_ = `_args_ = {  JOB= "J1" ,CLAGE=100  ,CLNO=20  ,DEBTINC=20  ,DELINQ=2  ,DEROG=0  ,
MORTDUE=4000  ,NINQ=1  ,YOJ=10  ,LOAN=1000  ,ASSET=100000  };`;

To allow the use of different versions of the model, the name of the scoring model is passed in as a parameter. The Javascript for the model follows.

let env = {
     astore: {
            caslib: 'Public',
            name  : 'GRADIENT_BOOSTING___BAD_2'
        }
};
let _appEnv_= jsonToDict(env, '_appEnv_');
 
//resulting in:
let _appEnv_ = `_appEnv_ = { astore = { caslib="Public", name="GRADIENT_BOOSTING___BAD_2"}};`;

Next, I prepend the strings to the CASL program in the client code with the following code snips.

let code = _args_ + _appEnv_ + `the CASL code shown below';
loadactionset "astore";
 
/* convert arguments to a cas table */
argsToTable(_args_, 'casuser', 'INPUTDATA' );
 
/* score */
action astore.score r=rc/
    table  = { caslib= 'casuser', name = 'INPUTDATA' } 
    rstore = { caslib= _appEnv_.astore.caslib,  name=_appEnv_.astore.name }
    casout  = { caslib = 'casuser', name = 'OUTPUTDATA' replace= TRUE};
 
/* fetch results */
action table.fetch r = result /
    table = {  caslib = 'casuser' name = 'OUTPUTDATA' } ;
 
/* extract the score and send it as a dictionary */
score = result.Fetch[1].P_BAD;
send_response({score = score});

Now the CASL program can access the incoming information using the two dictionaries _args_ and _appEnv_. Note: As a personal choice, I use a convention of _args_ for user input and _appEnv_ for application specific information. I use the restaf application framework to make the http calls as shown below.

let payload = {
        action: 'sccasl.runCasl',
        data  : { code: code}
    }
 let result = await store.runAction(session, payload); 
let score = result.items('results', 'score');

Notice the absence of string substitutions that look strange. Just simple, straight forward coding. Easier than saying your name backwards, forcing you back to the fifth dimension.

The argsToTable.casl function

The sample code above used the function argsToTable. As you may guess it converts the _args_ dictionary into a CAS table used in the scoring action. The argsToTable is the function in CASL handling this task.

Function definition

argsToTable ⇒ Load dictionary into a CAS Table

Param Type Description
input dictionary the data to load
caslib string caslib of output table
name string name of output table

 

The relevant CASL code from Step 1 is reproduced here:

argsToTable(_args_, 'casuser', 'INPUTDATA' );

The argsToTable function is either stored on a server or prepended to the CASL code sent to the runCasl action. This function removes the need to run a http call to load the data in the CAS table.

Returning data from CAS - the send_response function

The ultimate sidekick function
Any good super hero has a sidekick. The function send_response in CASL is very versatile - it allows one to return data in the form the application needs and allows more than one result. In many programs I return data in a form easily consumed by the client code.

For example, if you wanted to return just the rows of table you can do the following:

function resultsToDict(r);
    casResults = {};
    i = 1;
  do row over r;
     casResults[i] = row;
     i = i + 1;
   end;
  return casResults;
end;
 
/* and use it as follows: */
 
action table.fetch r = result /
    table = {  caslib = 'casuser',  name = 'mydata' };
/* extract the data and return it as a dictionary */
casResults = resultsToDict(result.Fetch);
send_response({casResults: casResults});

Finally

SAS Super Coder
Using a combination of CASL, a couple of utility functions and the runCasl action you can develop some very efficient programs with minimal traffic between your client and the server. If you run multiple actions in sequence you should consider grouping them into a CASL program and executing them on the CAS server using the runCasl action. You too can be a SAS Super Coder!

Next

In my next article, which I hope to finish in a flash, I will discuss using the runCasl action to create a browser for CAS tables with support for pagination.

All comments are welcome. Please feel free to clone the code, make it better.

Cheers...
Deva

Let runCasl be your BFF and favorite action hero

Share

About Author

Deva Kumar

Distinguished Systems Architect

Deva Kumar has been with SAS Institute since 1982. His current focus is on developing applications with SAS Viya. The technologies he is focused on are: REST API, Graphql and serverless functions.

Leave A Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Back to Top