Tag: SAS Viya

Artificial Intelligence
PythonからSASの画像処理機能を使って画像マッチング

5月23日に開催されたSAS Forum Japan 2017の「SAS Viyaディープダイブ」セッションでは、SASのAIに搭載されている画像処理機能が入門レベルとして紹介されました。 セッション内では、皆様にとってもお馴染みの「浅草雷門」の写真を使った画像マッチングのデモも紹介しました。雷門を正面から撮った写真の中から、「雷門の提灯」の部分を切り出し、これをテンプレート画像として使用し、この「雷門の提灯」が写っている写真だけを画像マッチングによって見つけ出すというデモです。 さあ、ちゃんと「雷門の提灯」が写っている写真だけを見つけ出すことができたのでしょうか? 以下は、Jupyter Notebookを使用し、PythonからSAS の画像処理機能を活用してマッチングを実行した結果です。(コードの一部抜粋) 【ライブラリのインポート】 In [16]: # import libraries import swat import matplotlib.pyplot as plt import os import json import numpy as np 【テンプレート画像「雷門の提灯」のロード】 In [24]: # load an image to cas r = conn.image.loadImages(casout={"caslib":"casuser", 'name':tmp_file_data[0], 'replace':True}, path=tmp_file_path) tmpTable = conn.CASTable(tmp_file_data[0]) 【この画像にマッチングさせます】 【マッチング対象画像のロード】

Analytics | Machine Learning
SAS言語派集まれ!SAS StudioからSASのAIを使ってみよう!

5月23日に開催されたSAS Forum Japan 2017では、通常のセッション枠とは別に、「スーパーデモ」と題して、各種SAS製品やソリューションのデモが紹介されました。通常セッションの休憩時間はもとより、セッション時間中でも多くの方々が「スーパーデモ」エリアに集まり、食い入るようにデモも見られていました。 その中で、私が実施したデモ内容をご紹介します。 SASのAI機能は、SAS言語のみならず、Python, R, Java, Luaなどの汎用プログラミング言語からも活用可能ですが、このデモでは、SAS Studioを使用し、SAS言語でSASのAI機能を活用したモデル作成を行いました。 詳細(スライド版)に関しては、以下をご覧ください。(SlideShareに公開済み) SAS言語派集まれ!SAS StudioからSAS Viyaを使ってみよう! from SAS Institute Japan 詳細(デモ版)に関しては、以下をご覧ください。(YouTubeに公開済み) 今なら無償でSAS Viyaを試用することができます。詳細は以下のブログを参照してください。 SAS Viyaを体感してみよう! ~SAS Viya無償試用版利用ガイド~

Analytics | Artificial Intelligence
SASのAI機能で異常検知してみよう!

5月23日に開催されたSAS Forum Japan 2017の「SAS Viyaディープダイブ」セッションでは、SASのAIに搭載されている教師なし学習の3つの手法(SVDD(Support Vector Data Description), ロバストPCA, Moving Window PCA)を用いた異常検知の概要が紹介されました。 手法ごとの適用分野やSAS Studioを用いて実行した結果の紹介と、異常検知を業務に適用する際に留意すべき事項も交えてご紹介しています。 詳細(スライド内容)に関しては、以下をご覧ください。(SlideShareに公開済み) SAS Viya で異常検知してみよう! from SAS Institute Japan 詳細(講演ビデオ)に関しては、以下をご覧ください。(YouTubeに公開済み) 今なら無償でSAS Viyaを試用することができます。詳細は以下のブログを参照してください。 SAS Viyaを体感してみよう! ~SAS Viya無償試用版利用ガイド~

Analytics
Pythonで操るSASの画像処理技術入門編

5月23日に開催されたSAS Forum Japan 2017の「SAS Viyaディープダイブ」セッションでは、SASのAIに搭載されている画像処理機能が入門レベルとして紹介されました。 従来からSASを活用されている方々にとっては、「SAS」と「画像処理」って、なかなか結びつかないのではないでしょうか? 「画像処理技術」に関して、SASではどのようなアプローチをとってきているのか...を、過去、現在、そして未来に分けて紹介しています。 詳細(スライド内容)に関しては、以下をご覧ください。(SlideShareに公開済み) Pythonで操るSAS Viyaの画像処理技術入門編 from SAS Institute Japan   詳細(講演ビデオ)に関しては、以下をご覧ください。(YouTubeに公開済み)

Machine Learning
Python, Rで使うSAS Viya!

みなさま、SAS Viyaはご存知でしょうか? SAS ViyaはSASが2016年末に出した新データ分析プラットフォームでして、データの探索、整形から機械学習まで、幅広くデータ分析することができる万能品です。 こんな感じのロゴです。 SAS Viyaの特徴にインメモリエンジンによる分散処理とオープンというものがあります。 SAS Viyaでのデータ分析はすべてCASというエンジンで実行されるのですが、このCASはサーバのメモリ上にデータをロードし、分析処理が展開されます。しかも複数サーバ構成でも良い感じにスケールして並列分散処理するので、1台のサーバにデータが乗らないとか、1台だけだと遅いとかいうことはありません。   SAS Viyaの特徴 さらにSAS Viyaはオープンな特徴があります。 どうオープンなのかというと、実は裏表なく嘘のつけない性格・・・というわけではありません。 SAS ViyaはSAS言語のみならずPythonやR、Java、LuaそしてREST APIといったさまざまな言語で操作することができるオープン性を持っています。 従来のSAS製品だとSAS言語を覚えないと使うことができなかったのですが、SAS Viyaでは多くのデータサイエンティストさんが使っているPythonやRでデータ分析ができます。しかも同じプラットフォームでデータ分析するので、言語間で違う結果が出るということはありません。同じ設定で分析すれば、どの言語を使っても同じ結果が返ってきます。 さらにいえばPythonやRでデータ分析するときも、多くの場合は1台のサーバやパソコンで処理すると思います。そのさい、サーバやパソコンはCPUやメモリのすべてをデータ分析に割くということはありません。マルチコアCPUを使っていても、大体はシングルコアで処理されます。 しかしSAS Viyaではリソースを使い切ります。4コアであれば4コア、サーバ3台構成であれば3台を余さず使って、より速く効率的に分析します。 全体像でいうとこんな感じです。 どうやって使うの? PythonやRでSAS Viyaを使いはじめるときは、まずはSWATというOSSを導入する必要があります。 SWATはSpecial Weapon and Tacticsの略・・・ではありません。 SAS Scripting Wrapper for Analytics Transferという、SAS Viyaを操作するためのラッパーです。SASが作って、GitHubで公開しています。 Python SWAT https://sassoftware.github.io/python-swat/index.html R SWAT https://github.com/sassoftware/R-swat これらをpip installやinstall.packagesで入手して使いはじめることができます。 SWATはWindows、Linux、MacOSいずれもサポートしていますので、お好きなプラットフォームに導入できます。 Pythonでのプログラミング例はこんな感じです。たったこれだけで、SAS Viyaを使って決定木モデルを作ることができます。とても簡単です。 #

Data for Good | SAS Events | Students & Educators
小林 泉 0
SGF2017 レポート - 初日、オープニングセッション他

今年のSAS Global Forum は、USのフロリダ州オーランドで開催されました。 例年同様日曜日スタート 従来と異なるのは、パートナー様向けの、SAS Partner Forum 2017 がSGFと同時開催されたことです。日本から参加されたSASジャパンのパートナー企業様は、前日夜のレセプションから始まり、イベント週間の先頭をきって、日曜日朝8:30からのSAS Executiveも登壇するセッションに参加いただき、みっちり午後までのスケジュールを、忙しくこなして頂きました。その様子は、こちらのSAS Partner Blogよりビデオでご覧いただけます。お忙しい中を時間を割いて日本からご参加いただくパートナー企業様が年々、増加しており、今年もセッション他、有意義なコミュニケーションの時間を過ごさせていただきました。誠にありがとうございます。多種多様なスキル・経験をお持ちのパートナー企業皆様に囲まれ、今後のSASビジネスに非常に心強さを感じました。 明日のリーダーを育成する さて、SAS Global Forum、通称SGFは、初日の夜のOpening Sessionからスタートなのですが、その前に、前述のパートナー様向けのイベントだけでなく、毎年最も重要なイベントの一つであるAcademic Summitが行われます。これは、SASが重要視することの一つである、人材育成・教育への投資、そしてその結果、社会へ優秀なデータサイエンティストを生み出すための活動であるAcademic Programの年次の総会のようなものです。教育関係者だけではなく企業関係者も参加することで、実務で役立つ教育の促進と人材の確保というエコシステムを形成しています。これを特徴付ける数字としては、このイベントのスポンサーを見てもわかります。 通常のパートナー企業様のスポンサーが29社 アカデミックのスポンサーは、16教育機関。 この数から見ても、本イベントを大学などの教育機関が重要視していて、教育と企業との連携が盛んであることが伺えると思います。 SAS Global Forumそのものが、教育機関と民間企業の接点の場であり、学生の発表や表彰、そして参加大学の企業へのアピールの場にもなっています。さて、Academic Summitのアジェンダを見てみましょう。 ネットワーキング SAS担当エグゼクティブの挨拶 スカラシップ受賞者の紹介 Student Ambassador Program受賞者の紹介 Student Symposiumファイナリストの発表 ゲスト講演 Student Symposium(SGF2017で実施されるコンペティション)の優勝チームである、Kennesaw State University の "The Three Amigos"は、「銀行の定期預金契約者の決定要因をロジスティック回帰と決定木で分析」したものでした。その他Student Symposiumの発表は以下のようなものがありました。 Dataninjas: Modeling Life Insurance Risk (Kennesaw State University)

Programming Tips
小林 泉 0
グラフ理論②:PythonとSAS Viyaでグラフ分析

はじめに 以前このブログ「グラフ理論入門:ソーシャル・ネットワークの分析例」でもご紹介しましたが。SASは従来からネットワーク分析(グラフ分析)をサポートしています。ネットワーク分析の基本的なことはまず上記のブログをご参照ください。 今回は、プログラミングスキルがあるアプリケーション開発者やデータサイエンティスト向けです。Pythonからネイティブに利用できるSAS Viyaを使用して、ネットワーク分析をする簡単な利用例をご紹介します。 2016夏にリリースされたSAS Viyaは、アナリティクスに必要な全てのアルゴリズムを提供しつつ、かつオープンさを兼ね備えた全く新しいプラットフォームです。これにより、SAS Viyaをアプリケーションにシームレスに組み込むことや、どのようなプログラミング言語からでもアナリティクス・モデルの開発が可能になりました。今回は、SASのパワフルなアナリティクス機能にアクセスするために、そのオープンさがどのように役立つののかにフォーカスします。 前提条件 SAS Viyaは、REST APIにも対応しているため、それを使用しても良いのですが、一般的には、使い慣れたプログラミング言語を使用する方が効率が良いと考えられるため、今回は、データサイエンティストや大学での利用者が多い、Pythonを使用したいと思います。 デモ環境としては、Pythonコードを実行できるだけでなく書式付テキストも付記できる、Webベースのオープンな対話型環境であるJupyter Notebookを使用します。Jupyterをインストールした後に、SAS Scripting Wrapper for Analytics Transfer(SWAT)をインストールする必要があります。このパッケージは、SAS Cloud Analytic Services(CAS)に接続するためのPythonクライアントです。これにより、Pythonから全てのCASアクションを実行することが可能となります。SWATパッケージの情報やJupyter Notebookのサンプルはこちらをごらんください。https://github.com/sassoftware SAS Cloud Analytic Services(CAS)にアクセスする SAS Viyaのコアにあるのは、SAS Cloud Analytic Services(CAS: キャス)というアナリティクスの実行エンジンです。"CASアクション"という個々の機能を実行したり、データにアクセスしたりするためには、CASに接続するためのセッションが必要となります。セッションからCASへの接続には、バイナリ接続(非常に大きなデータ転送の場合にはこちらが推奨です)あるいは、HTTP/HTTPS経由のREST API接続のどちらかを使用することができます。今回は、デモンストレーション目的で非常に小さなデータを扱うので、RESTプロトコルを使用します。SAS ViyaとCASのより詳細な情報はこちらのオンラインドキュメントをごらんください。 多くのプログラミングと同様、まずは使用するライブラリの定義からです。Pythonでは、importステートメントを使用します。非常に良く使われるmatplotlibライブラリに加えて、ネットワークをビジュアライズするためのnetworkxも使用します。 from swat import * import numpy as np import pandas as pd import matplotlib.pyplot as

SAS Events
小林 泉 0
SAS Global Forum 2016 開催報告②: Tech Connection SessionでSAS新製品をより詳しく知る

オープニングセッションの翌日4/19の朝からは、Ben Casnocha(シリコンバレーで活躍する企業家で著作家)のKeynote Sessionに続き、例年通り、Tech Connectionというセッションが実施され、SAS本社のR&D部門や製品管理部門による新製品紹介とデモンストレーションが行われました。 このセッションでは、実際の企業・組織でよくみかけるシナリオとジレンマを例にとり、SAS Viyaがどのように役に立つのかを紹介しました。データ・サイエンティストでも、統計家でも、あるいはITアナリストでも、ビジネスアナリストでも、そして作業担当者であっても、管理者であっても、それぞれの立場・役割の方に、SAS Viyaが価値をもたらしてくれることをご理解いただけると思います。 SAS® Cloud Analytics Webブラウザからアナリティクス・アプリケーションにアクセスして、予測モデルをすぐに作成することが可能 「組み込みアナリティクス」として、どのような言語からでもSASのAPIにアクセスして既存のビジネス・アプリケーションやビジネス・プロセスに組み込むことができる セットアップ不要なため、S/Wのインストールやクラスターの準備をする必要はない。ユーザーは、セキュアなクラウドベースの環境で、分析をし結果を保存することができる 当日のデモンストレーション:   SAS® Visual Analytics SAS Viyaに対応したSAS Visual Analytics最新バージョン データ探索機能(Visual Analytics Explorer)、レポート作成機能(Visual Analytics Designer)、予測モデリング機能(Visual Statistics)が、完全に統合され単一インターフェースになることにより、すべてをシームレスに利用することが可能 ユーザーインターフェースは、HTML5で作り直された 当日のデモンストレーション: SAS® Customer Intelligence 360 "役割に応じた"アナリティクス Software as a Serviceクラウド型 オムニチャネル:包括的なカスタマーインテリジェンスHub 当日のデモンストレーション: SAS® Visual Investigator 脅威の検出は今や自動化することが可能。ウェブサイトやソーシャルメディア、様々なデータベースから情報を収集し、それぞれ異なるデータソース間の関連性を見つけ出す アナリストが、効率的で効果的な調査活動を行うことが可能 不正検知、公共のセキュリティなど様々な課題に応じた利用が可能 当日のデモンストレーション:   SAS®

Customer Intelligence | Internet of Things | SAS Events
小林 泉 0
SAS Global Forum 2016 開催報告①: Opening Sessionで革新的な新アーキテクチャを発表

また、SAS Global Forumの季節が巡ってきました。このBlogの最初のエントリーは、昨年2015年のSAS Global Forumのご紹介でしたので、Blog開始から早一年がたったということです。いつもご愛読ありがとうございます。このBlogを楽しんでいただいている方々もいらっしゃるようで、嬉しく思います。今年も何回かに分けて、このSAS Global Forum 2016の模様をご紹介をしたいと思います。 今年は、米国ラスベガスで現地時間の4/18-4/21に実施されました。約5,000人のユーザー様やパートナー様が集まる一大イベントです。4/18夜のオープニングセッションに先駆けて、メディア向けの説明会も行われました。 メディア向け説明会が行われたのは、SAS本社 世界の働きたい会社ベスト10に入るSAS、プライベートカンパニーだからこそできる環境づくり(EnterpriseZine) サッカー場やプール、保育所も完備のSAS本社に潜入--プライベートジェットも(ZDNet Japan) SAS® Viya™ - 今年のイベントにおける最大のニュース 去る2016/4/18に行われたSAS Global Forum 2016のオープニングセッションでは、いくつかの革新的なテクノロジーの発表が行われました。例年と少し進行が異なり、オープニングセッションの後半でSASのCEOである、Jim GoodnightからSASの新しいアーキテクチャについての発表があり、会場がどよめきました。 プレスリリース:SAS、「SAS® Viya™」を発表:オープンでクラウド対応したハイパフォーマンス・アナリティクスとビジュアライゼーションのための次世代アーキテクチャ   Jim Goodnightから、アナリティクスをさらに使いやすくし、すべての人が利用しやすいように大きく進化した、SAS Viyaという新しいアーキテクチャの発表を行いました。また、すでに顧客の多くが使用しているSAS9環境と組み合わせてこのSAS Viyaを利用することも可能であるとも話しました。 続けて、SAS Viyaの開発をリードしてきた、Analytic Server Research and DevelopmentのVice Presidentである、Oliver Schabenbergerからこの新しいクラウドベースのアナリティクス&データマネージメントアーキテクチャの概要について説明がありました。 Schabenberger 曰く、 『SASのお客様のアナリティクスへの取り組みや活用方法は様々で、スモールデータからビッグデータ、簡単なアナリティクスから難しい機械学習課題の解決まで非常に多岐に渡ります。ストリーミングデータや蓄積したビッグデータ、構造化データや非構造化データの利用、さらには、個人での利用から数百ユーザーの同時接続利用、クラウドであったりオンプレミスであったり、利用者は、データサイエンティストであったり、ビジネスユーザーであったりなど、様々です。』 『そこで、SASは、データサイエンティストかビジネスアナリストかに関わらず、全ての人が利用することのできる、最新の統合アナリティクス環境を開発しました。SAS Viyaの優れているところは、統合され、オープンな、簡単だが非常にパワフルであり、クラウド環境に適しており、マルチ・クラウドアーキテクチャである点です。』 メディア各社の記事もご参照ください。 アナリティクス一筋40年、SASから生まれた新たなプラットフォームの「Viya」とは(EnterpriseZine) ビジネスアナリティクス、機械学習の進化とSASの新アーキテクチャ(@IT)   SAS Viyaについては、今後もこのblog上でも継続的に情報をご提供していきます。 SAS Customer

1 4 5 6