テクノロジー

Artificial Intelligence
SAS Viya:Python API向けパッケージ:DLPyの最新版1.1拡張機能とは

SAS Viyaのディープラーニング機能をPythonから利用するためのハイレベルAPIパッケージの最新版であるDLPy1.1では、主にCNN(Convolutional Neural Network)に関連する機能が拡張されています。 主な拡張機能: ・新たに3つのネットワーク構造に対応 【U-Net】 元々は、医療用画像のセグメンテーション向けに開発されたネットワークです。 (出典:https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/) 【MobileNet】 モバイル端末のようなリソースの少ない環境でも、畳み込み計算を分割(Depthwise Separable Convolution)することで、軽快に、素早く、そして精度の高い結果を得ることができると言われているネットワークです。 左が一般的な畳み込み構造。右が、MobileNetの構造。(出典:https://arxiv.org/pdf/1704.04861.pdf) 【ShuffleNet】 MobileNet同様に軽量軽快なネットワークですが、MobileNetでの畳み込みの分割に加えて、その名の通り、チャンネルをシャッフルしてチャンネル間での畳み込みを行い、特徴抽出を効率化するネットワーク構造です。 (出典:https://arxiv.org/pdf/1707.01083.pdf) ・上記ネットワーク構造に伴う、畳み込み層機能の拡張 【transpose convolution(転置畳み込み)】 Deconvolution(逆畳み込み)とも言われ、元となる画像に0 paddingして拡大してから畳み込む手法です。(上記U-Netに関連) 【group convolution(グループ化畳み込み)】 入力層をチャンネル方向にグループ分割して、グループごとに畳み込みを行い、最後に結合して出力する手法です。分割することで計算量を小さくすることができます。(上記MobileNet、ShuffleNetに関連) ・画像解析手法の拡張 【物体検出(Object Detection)手法にFaster R-CNNを追加】 R-CNNからFast R-CNN、そしてFaster R-CNNへと処理時間の短縮と精度向上が図られ進化してきているアルゴリズムです。 (出典:https://arxiv.org/pdf/1506.01497.pdf) DLPyの従来版からサポートしているYOLOに比べると処理時間はかかりますが、より高い精度を得ることができます。 【新たにセグメンテーション(Semantic Segmentation)に対応】 セグメンテーションは、画像中に存在する複数の物体や領域に対して、ピクセルレベルで推定する問題です。画像を入力すると、各画素に対して識別結果が付与された画像を出力します。一般的には、 Nクラスのセグメンテーションモデルは、Nチャンネルの出力画像を出力し、各チャンネルの画素値は各クラスの確率を表します。(上記U-Netに関連) 以上のように、PythonユーザーがDLPyを通して活用することができる、SAS Viyaのディープラーニング(CNN)機能が拡張されています。 ※DLPyの詳細に関しては、Githubサイトでご覧いただけます。 ※Enterprise Open Analytics Platform 「SAS Viya」 を知りたいなら「特設サイト」へGO!

Advanced Analytics | Analytics | Artificial Intelligence | Data Visualization | Machine Learning
SAS Viya: ビジュアルパイプラインでスコアリング

SAS Viyaでは、Model Studioを使用し、機械学習のモデル、時系列予測のモデル、テキストマイニングのモデルをGUIベースの簡単マウス操作で作成することができます。モデル生成プロセスをグラフィカルなフロー図として描き、実行するだけです。このフロー図のことを「パイプライン」と呼んでいます。 「SAS Viya: ビジュアルパイプラインで予測モデル生成(基本編)」では、モデル生成と精度評価の基本的な流れを紹介しましたが、今回は、生成したチャンピオンモデルに新しいデータを当てはめてインタラクティブにスコアリングを実行する手順を紹介します。また、スコアリング結果のデータの探索や、エクスポートまで試してみましょう。 「SAS Viya: ビジュアルパイプラインで予測モデル生成(基本編)」で作成したパイプラインでは、勾配ブースティングのモデルの方が精度が高い=チャンピオンモデルだと判断されました。 それでは、このモデルに新しいデータを当てはめてスコアリングを実行してみましょう。 まず、画面左側の機能ノードリストの「その他」セクション内にある「データのスコア」を「勾配ブースティング」ノード上にドラッグすると、「勾配ブースティング」ノードの下に「データのスコア」ノードが追加されます。 「データのスコア」ノードを選択し、画面右側で以下の項目を指定します。 ・モデルに当てはめるデータテーブル名 ・スコアリング結果データの出力先ライブラリとテーブル名 「データのスコア」を右クリックし、表示されるメニューから「実行」をクリックすると、スコアリングが実行されます。 スコアリング処理が完了すると「データのスコア」ノード上に緑色のチェックマークアイコンが表示されます。 それでは、スコアリング結果のデータを見てみましょう。 「データのスコア」ノードを右クリックし、表示されるメニューから「結果」を選択します。 すると、データのスコアの結果画面が表示され、「出力データ」タブ内で、データの中身を確認することができます。「予測:BAD=1」列に、顧客ごとの延滞確率に相当するスコア値が表示されています。 それでは、このデータを探索してみましょう。 「探索とビジュアル化」アイコンをクリックし、 表示される画面内で、このデータを探索用に保存する先のライブラリとテーブル名を指定し、「探索とビジュアル化」ボタンをクリックします。 すると、このデータに基づき、「SAS Visual Analytics – データ探索とビジュアル化」画面が表示され、データ探索やレポーティングが可能になります。 例えば、スコア値である「予測:BAD=1」変数と「資産に対する負債の割合」変数の関係性を探索したり、 スコア値が0.7以上の顧客データをエクスポートして、二次活用したり、等々も簡単です。 以上のように、SAS Viyaでは、データの準備はもとより、モデル生成からスコアリング、そして、スコアリング結果データの探索からエクスポートまでをGUIベースでシームレスに実施することができるんですね。 ※Enterprise Open Analytics Platform 「SAS Viya」 を知りたいなら「特設サイト」へGO! ※「ビジュアルパイプラインでスコアリング」は、SAS Viya特設サイトにデモ動画を近々公開予定です。

Artificial Intelligence
DLPyを使用した、ディープラーニングのfunctional APIモデル構築

SAS Viyaの分析機能をPythonから利用するためのハイレベルAPIパッケージであるDLPyでは、kerasと同等の簡潔なコーディングで、複雑な画像処理やディープラーニングを実行することができます。 そして、DLPyでは、kerasと同様に、2つの手法でディープラーニングのモデルを構築することができます。 Sequential modelとfunctional API modelです。 Sequentialとは、その名の通り、レイヤーを順序通りに積み重ねて、順序通りに実行していくモデルです。 以下は、DLPyを用いて、PythonからSAS Viyaのディープラーニング機能を使用して画像分類向けsequential modelのネットワークを定義している例です。 In [10]: model1 = Sequential(sess, model_table='Simple_CNN') model1.add(InputLayer(3, 224, 224, offsets=tr_img.channel_means)) model1.add(Conv2d(8, 7)) model1.add(Pooling(2)) model1.add(Conv2d(8, 7)) model1.add(Pooling(2)) model1.add(Dense(16)) model1.add(OutputLayer(act='softmax', n=2)) In [11]: model1.print_summary() Out[11]: In [12]: model1.plot_network() Out[12]: 一方、functional APIは、sequentialでは、表現することが難しい、より複雑な構造のモデルを構築する際に利用されます。 以下は、kerasの公式サイトに記載されている文面です。 “functional APIは,複数の出力があるモデルや有向非巡回グラフ,共有レイヤーを持ったモデルなどの複雑なモデルを定義するためのインターフェースです.” そして、DLPyでは、kerasと同様にsequential modelだけでなく、functional API modelの構築も可能になっています。 以下はその一例として、複数の入力と出力を持つような画像分類のためのディープラーニングモデルのネットワーク例です。 まず、テンソルオブジェクトを返すInput()によって、2つのテンソル、グレースケール画像とカラー(RGB)画像、を定義します。 グレースケール画像は2つの畳み込み層に送り込まれます。カラー画像はそれらとは別の畳み込み層に送り込まれます。

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
PythonやRで開発されたモデルの精度をビジュアルパイプラインで簡単比較

データサイエンティスト(以降、DSと表記)は、お好みのプログラミング言語を使用して、日々モデリングを行っています。昨今は、その中でもオープンソースのプログラミング言語であるPythonやRを使用されている方の割合が多くなってきているようです。その結果として、企業の分析組織やチーム内には複数の異なる言語を活用するDSが混在するケースも見受けられます。(一人で両方の言語を操る方もいます。) 「Pythonを操るAさんが作成されたモデルと、Rを操るBさんが作成されたモデル、どちらの精度が高いのかを容易かつビジュアルに比較することができたら…」  ということで、今回は、SAS ViyaのModel Studioを使用し、ビジュアルなパイプライン上での異なる言語間モデル精度比較をご紹介します。  手順は以下の通りです。 ① プロジェクトの新規作成と学習用のデータソース選択 ② パイプラインの作成と実行 ③ 実行結果(モデル精度)の確認 ① プロジェクトの新規作成と学習用のデータソース選択 「SAS Viya: ビジュアルパイプラインで予測モデル生成(基本編)」の「1.プロジェクトの新規作成と学習用のデータソース選択」を参照ください。 ② パイプラインの作成と実行 画面上部にある「パイプライン」をクリックします。 パイプラインには「データ」ノードのみが表示されています。左端の機能ノードアイコンをクリックすると、 パイプラインに追加可能な機能ノードのリストが表示されます。 まずは学習データに対する前処理として、欠損値補完を行います。 「データマイニングの前処理」内にある「補完」を「データ」ノード上にドラッグすると、 「データ」ノードの下に「補完」ノードが追加されます。 同様の手順で、「その他」内にある「オープンソースコード」を「補完」ノード上へドラッグすると、「補完」ノードの下に「オープンソースコード」ノードが追加されます。 機能ノードごとのオプション設定は、右側画面内で行います。 「言語」が「Python」であることを確認し、「開く」をクリックします。 開かれた画面内に、比較対象のPythonのコード(ランダムフォレストのモデル)をコピーします。右上の「保存」(フロッピーディスクアイコン)をクリックし、「閉じる」をクリックします。 ※ターゲット変数名や入力変数リスト名など、画面左側の変数名を使用することによって、オープンソースコードノードとその他のノード間でのデータ連携が可能となり、異なる言語のモデル間での精度比較も可能になります。各種規定変数名の詳細に関しては、オンラインマニュアルを参照してください。 「オープンソースコード」ノードの右側にある3つのドットが縦に並んでいる(スノーマン)アイコンをクリックし、「名前の変更」を選択し、 「Pythonフォレストモデル」に変更します。 このようにドラッグ操作でノードを追加する以外に、パイプライン上のメニューからノードを追加することもできます。 「補完」ノードのスノーマンアイコンをクリックし、「下に追加」>「その他」>「オープンソースコード」の順に選択すると、 「補完」ノードの下に「オープンソースコード」ノードが追加されます。 以降、同様の手順で比較対象のRのコード(ランダムフォレストのモデル)をコピーし、ノードの名前を変更します。 「オープンソースコード」ノードは、データに対する前処理として使用することもできます。デフォルトでは、「オープンソースコード」ノードは、データに対する前処理として認識されているので、これを「教師あり学習」に切り替えます。 PythonとRのモデルノードそれぞれのスノーマンアイコンをクリックし、「移動」>「教師あり学習」を選択します。 すると、「モデルの比較」ノードが追加され、PythonとRのモデルノードと接続されます。 パイプラインが完成したので、右上の「パイプラインの実行」アイコンをクリックし、実行します。 ③ 実行結果(モデル精度)の確認 処理が正常に完了したら、「モデル比較」ノードのスノーマンアイコンをクリックし、「結果」を選択します。 Rのフォレストモデルの方が精度が高い、チャンピオンモデルであると表示されました。 リフトやROC、様々な統計量で、精度を詳細に比較することもできます。 以上が、ビジュアルパイプラインでPythonとRのモデル精度を比較する手順です。 もちろん、必要に応じて、PythonやRのモデルとSASのモデルの精度を比較することもできます。 ※ビジュアルパイプラインでPythonとRのモデル精度を比較は、SAS Viya特設サイトにある動画でもご覧いただけます。 ※実際にPythonとRのモデル精度比較を試してみたい方は、Githubに公開されているアセットを活用ください。

Machine Learning
SAS Japan 0
機械学習アルゴリズム選択ガイド

この記事はSAS Institute Japanが翻訳および編集したもので、もともとはHui Liによって執筆されました。元記事はこちらです(英語)。 この記事では、関心対象の課題に適した機械学習アルゴリズムを特定・適用する方法を知りたいと考えている初級~中級レベルのデータ・サイエンティストや分析担当者を主な対象者としたガイド資料を紹介し、関連の基本知識をまとめます。 幅広い機械学習アルゴリズムに直面した初心者が問いかける典型的な疑問は、「どのアルゴリズムを使えばよいのか?」です。この疑問への答えは、以下を含む数多くの要因に左右されます。 データの規模、品質、性質 利用できる計算時間 タスクの緊急性 データの利用目的(そのデータで何をしたいのか?) 経験豊富なデータ・サイエンティストでも、どのアルゴリズムが最も優れたパフォーマンスを示すかは、複数の異なるアルゴリズムを試してみなければ判断できません。本稿の目的は、特定の状況にのみ有効なアプローチを紹介することではなく、「最初に試すべきアルゴリズム」を何らかの明確な要因にもとづいて判断する方法についてガイダンスを示すことです。 機械学習アルゴリズム選択チートシート この機械学習アルゴリズム選択チートシートは、幅広い機械学習アルゴリズムの中から特定の課題に最適なアルゴリズムを見つけ出すために役立ちます。以下では、このシートの使い方と主要な基礎知識をひと通り説明します。 なお、このチートシートは初心者レベルのデータ・サイエンティストや分析担当者を対象としているため、推奨されるアルゴリズムの妥当性に関する議論は省いてあります。 このシートで推奨されているアルゴリズムは、複数のデータ・サイエンティストと機械学習の専門家・開発者から得られたフィードバックやヒントを取りまとめた結果です。推奨アルゴリズムについて合意に至っていない事項もいくつか残っており、そうした事項については、共通認識に光を当てながら相違点のすり合わせを図っているところです。 利用可能な手法をより包括的に網羅できるように、手元のライブラリが拡充され次第、新たなアルゴリズムを追加していく予定です。 チートシートの使い方 このシートは一般的なフローチャートであり、パス(楕円形)とアルゴリズム(長方形)が配置されています。各パスでYES/NO、または高速性/正確性を選びながら最終的に到達したものが推奨アルゴリズムとなります。いくつか例を挙げましょう。 次元削減を実行したいものの、トピック・モデリングを行う必要がない場合は、主成分分析を使うことになります。 次元削減が不要で、応答があり、数値を予測する場合で、高速性を重視するときには、デシジョン・ツリー(決定木)または線形回帰を使います。 次元削減が不要で、応答がない場合で、階層構造の結果が必要なときには、階層的クラスタリングを使います。 場合によっては、複数の分岐に当てはまることもあれば、どの分岐にも完璧には当てはまらないこともあるでしょう。なお、利用上の重要な注意点として、このシートは、あくまでも基本的な推奨アルゴリズムに到達できることを意図しているため、推奨されたアルゴリズムが必ずしも最適なアルゴリズムでない場合もあります。多くのデータ・サイエンティストが、「最適なアルゴリズムを見つける最も確実な方法は、候補のアルゴリズムを全て試してみることだ」と指摘しています。 機械学習アルゴリズムのタイプ このセクションでは、機械学習の最も一般的なタイプを取り上げ、概要を示します。これらのカテゴリーについて十分な知識があり、具体的なアルゴリズムの話題に進みたい場合は、このセクションを飛ばし、2つ先のセクション「各種アルゴリズムの概要と用途」に進んでいただいてかまいません。 教師あり学習 教師あり学習アルゴリズムは、実例のセット(入力データと出力結果)を基に予測を行います。例えば、過去の販売データを用いて将来の価格を推定することができます。教師あり学習では、ラベル付きのトレーニング用データからなる入力変数と、それに対応する望ましい出力変数があります。アルゴリズムはトレーニング用データを分析し、入力を出力にマッピングする関数を学習します。この関数は、トレーニング用データにおける入力/出力の関係を一般化することによって推定されます。この関数に新しい未知の入力データを与えると、それに対応する出力が算出され、その出力が未知の状況における結果の予測値となります。 分類:データを用いてカテゴリー変数を予測する場合、教師あり学習は「分類」と呼ばれます。これは例えば、画像にラベルや標識(例:犬または猫)を割り当てるようなケースです。ラベルが2つしかない場合は「2値(バイナリ)分類」、3つ以上のラベルがある場合は「マルチクラス分類」と呼ばれます。 回帰:連続値を予測する場合、その教師あり学習は「回帰問題」となります。 予測:過去と現在のデータを基に将来を予測するプロセスであり、最も一般的な用途は傾向分析です。具体例として一般的なのは、当年度および過去数年の販売実績を基に次年度の販売額を推定することです。 半教師あり学習 教師あり学習を行う上での課題は、ラベル付きデータの準備に多大な費用と時間がかかりかねないことです。ラベル付きデータが限られている場合には、ラベルなしの実例データを用いて教師あり学習を強化することができます。これを行う場合は、機械にとって完全な「教師あり」ではなくなるため、「半教師あり」と呼ばれます。半教師あり学習では、ラベルなしの実例データと少量のラベル付きデータを使用することで、学習精度の向上を図ります。 教師なし学習 教師なし学習を実行する場合、機械にはラベルなしのデータのみが与えられます。学習の目的は、クラスタリング構造、低次元の多様体、スパース(疎)ツリーおよびグラフなど、データの基底をなす固有パターンを発見することです。 クラスタリング:あるグループ(=クラスター)内の実例データ群が、その他のグループ内の実例データ群との間と比べ、(所定の基準に関して)高い類似性を示すような形で、実例データセットをグループ化します。この手法は、データセット全体を複数のグループにセグメント化する目的でよく使われます。グラスタリングの実行後に各グループ内で分析を実行すると、固有パターンを容易に発見できることが多々あります。 次元削減:検討の対象とする変数の数を減らします。多くの用途では、生データに極めて多次元の特徴が含まれており、一部の特徴は目的のタスクに対して冗長または無関係です。次元削減は、データに潜む真の関係性を発見するために役立ちます。 強化学習 強化学習は、環境からのフィードバックを基に「エージェント」(課題解決の主体者。例:ゲームのプレイヤー)の行動を分析および最適化します。機械は、取るべきアクションの選択肢を事前に教えられるのではなく、どのようなアクションが最大の報酬(例:ゲームのスコア)を生み出すかを発見するために、さまざまなシナリオを試行します。他の手法には見られない強化学習ならではの特徴は「試行錯誤」と「遅延報酬」です。 アルゴリズム選択時の考慮事項 アルゴリズムを選択する際は、正確性、トレーニング時間、使いやすさという3つの側面を常に考慮する必要があります。多くのユーザーは正確性を第一に考えますが、初心者は自分が最もよく知っているアルゴリズムに意識が向きがちです。 データセットが与えられたとき最初に考える必要があるのは、どのような結果になるにせよ、何らかの結果を得る方法です。初心者は、導入しやすく結果が素早く得られるアルゴリズムを選ぶ傾向がありますが、分析プロセスの最初の段階ではそれで問題ありません。まずは、何らかの結果を得て、データの概要を把握することを優先します。その後、データに対する理解を深め、結果をさらに改善することを目指し、より高度なアルゴリズムを試すことに時間を費やせばよいのです。 ただしこの段階でも、最高の正確性を示した手法が必ずしもその課題に最適なアルゴリズムであるとは限りません。通常、アルゴリズムから本来の最高パフォーマンスを引き出すためには、慎重なチューニングと広範囲のトレーニングが必要になるからです。 各種アルゴリズムの概要と用途 個別のアルゴリズムについて知識を深めることは、得られる結果と使い方を理解するために役立ちます。以下では、チートシートに掲載されている中でも最も基本的なアルゴリズムの詳細と、それらを使用すべき状況に関するヒントをまとめます。 線形回帰とロジスティック回帰 線形回帰は、連続従属変数 \(y\) と1つ以上の予測変数 \(X\) との関係をモデリングするためのアプローチです。この場合、\(y\) と

Data Visualization
SAS Visual Analytics 8.2 新機能概要

2017年11月にリリース予定の「SAS Visual Analytics 8.2」に搭載予定の新機能概要をご紹介します。 【SAS Visual Analytics 8.2 新機能概要】 サードパーティ・ビジュアライゼーション D3.jsやC3、あるいはGoogleチャートの機能を活用し、VAに標準装備のチャートタイプでは表現できない、より柔軟で洗練されたチャートを描画し、レポートに組み込むことが可能です。 新規追加ビジュアライゼーション バブルチェンジプロット、平行座標プロット、スケジュールチャート、など、新たに9種類のチャートオブジェクトが追加されます。 オブジェクト間の自動リンク&フィルタ設定 レポート内の全てのオブジェクトを自動的に連係させることで、効果的でインタラクティブなレポートを簡単に作成可能です。その際、一方向のフィルタなのか双方向のフィルタなのかを指定することができます。 レポート自動保存&復元 作成中のレポートは定期的に自動保存されます。これによって、仮に保存し忘れてログオフしたとしても、再ログオン時に前の状態を復元することができます。 カスタム領域塗りつぶし VA7.4と同様に、地図上にカスタムで指定した領域を塗りつぶして描画することが可能です。 地図機能拡張 Esri地図データとの連係機能が拡張され、デモグラフィック情報の活用が可能になります。例えば地図上に表示されている自店舗群を選択し、周辺住民の平均年収や年齢などの情報を把握でき、より効果的なロケーションアナリティクスが可能になります。  

Advanced Analytics | Programming Tips
SAS Viyaで線形回帰

SAS Viyaで線形回帰を行う方法を紹介します。 言語はPythonを使います。 SAS Viyaで線形回帰を行う方法には大きく以下の手法が用意されています。 多項回帰: simpleアクションセットで提供。 一般化線形回帰または一般線形回帰: regressionアクションセットで提供。 機械学習で回帰: 各種機械学習用のアクションセットで提供。 今回は単純なサインカーブを利用して、上記3種類の回帰モデルを作ってみます。   【サインカーブ】 -4≦x<4の範囲でサインカーブを作ります。 普通に \(y = sin(x) \)を算出しても面白みがないので、乱数を加減して以下のようなデータを作りました。これをトレーニングデータとします。 青い点線が \(y=sin(x)\) の曲線、グレーの円は \(y=sin(x)\) に乱数を加減したプロットです。 グレーのプロットの中心を青い点線が通っていることがわかります。 今回はグレーのプロットをトレーニングデータとして線形回帰を行います。グレーのプロットはだいぶ散らばって見えますが、回帰モデルとしては青い点線のように中心を通った曲線が描けるはずです。 トレーニングデータのデータセット名は "sinx" とします。説明変数は "x"、ターゲット変数は "y" になります。 各手法で生成したモデルで回帰を行うため、-4≦x<4 の範囲で0.01刻みで"x" の値をとった "rangex" というデータセットも用意します。 まずはCASセッションを生成し、それぞれのデータをCASにアップロードします。 import swat host = "localhost" port = 5570 user = "cas" password = "p@ssw0rd"

Machine Learning
小林 泉 0
機械学習のパラメータをオートチューニングしよう(回帰編)!

先日投稿した「機械学習のパラメータをオートチューニングしよう(分類編)!」の続きです。 今回は回帰分析をオートチューニングします。 あらまし 機械学習の課題はパラメータチューニングで、手動で最高のパラメータを探そうとすると、とても時間がかかり効率的ではありません。 SAS Viyaではパラメータチューニングを自動化するオートチューニング機能を提供しています。 オートチューニング機能を使うことで、限られた時間内、条件下で最高のパラメータを探索し、予測モデルを生成することができます。   今回やること 今回はオートチューニングを使って数値予測モデルを生成します。 使うデータは架空の銀行の金融商品販売データです。顧客の取引履歴と営業履歴から構成されており、新たな金融商品の販売数を予測するデータとなっています。 内容は以下のようになっており、約5万行、22列の構成です。 1行1お客様データとなっていて、顧客の口座情報や取引履歴、営業履歴が1行に収納されています。 ターゲット変数はcount_tgtで、これは各顧客が購入した金融商品数を表しています。 ほとんどが0(=未購入)ですが、購入されている顧客の購入数を予測するモデルを生成します。 今回はランダムフォレストを使って予測したいと思います。 ランダムフォレストは別々の決定木を複数作り、各決定木の予測値をアンサンブルして最終的な予測値とする機械学習の一種です。   まずは手動で予測 SAS Viyaでランダムフォレストを使って予測モデルを生成するにあたり、まずはCASセッションを作ってトレーニングデータとテストデータをインメモリにロードします。 # PythonからCASを操作するためのSWATライブラリをインポート import swat   # 接続先ホスト名、ポート番号、ユーザー名、パスワードを指定 host = "localhost" port = 5570 user = "cas" password = "p@ssw0rd"   # mysessionという名称のCASセッションを作成 mysession = swat.CAS(host, port, user, password)  

Machine Learning
小林 泉 0
機械学習のパラメータをオートチューニングしよう(分類編)!

機械学習で予測モデルを作るとき、課題のひとつにパラメータのチューニングがあります。 パラメータとはどういう設定値や制限値で機械学習の予測モデルを作るのかを示すものです。 料理に例えると、チャーハンを作る過程が機械学習のアルゴリズムだとすると、どういう具材をどのくらいの量入れるのかがパラメータです。 お米の品種や卵の有無、豚肉か鶏肉か、調味料の種類や量がパラメータになります。チャーハンの良し悪しはこれらパラメータの良し悪しに左右されます。おいしいチャーハンを食べるためには、具材をベストな組み合わせと量で投入する必要があります。 昼食においしいチャーハンを食べたので、チャーハンでたとえました。 話を戻すと、機械学習の決定木の深さであったり、ニューラルネットワークのニューロン数であったり、パラメータは自分で設定する必要があります。機械学習では複数のパラメータを組み合わせて、ベストなレシピを作らねば良い予測モデルは作れません。   SAS Viyaでは各種機械学習アルゴリズムを提供していますが、各機械学習にそれぞれのパラメータが用意されています。料理に例えると、メニューにチャーハンのみならず餃子、ラーメン、寿司、ステーキ、チーズケーキがあるようなものです。シェフ(≒データサイエンティスト)は全てのベストなレシピ(≒パラメータ)を探索せねばならず、労力がいります。 しかし! SAS Viyaには更に便利な機能として、オートチューニングというものが用意されています。 オートチューニングは最も良いパラメータを短い時間で探索してくれる機能です。料理に例えると、究極のチャーハンレシピをViyaが自動的に作ってくれる機能です。夢のようですね。 オートチューニングでは機械学習のパラメータを変えながら複数の予測モデルを作り、最も良い予測モデルのパラメータを探してくれるというものです。決定木だけでもパラメータは10種類以上あるのですが、それらの最良な値をみつけてくれます。 パラメータチューニングを行う際、最も安易な探索方法は各パラメータの全パターンを試すことです。全パターンを試せば、その中から最も良いものはたしかにみつかります。しかし欠点はパラメータチューニングに長い時間がかかってしまい、現実的な手法ではありません。 SAS Viyaのオートチューニングはより賢いパラメータ探索のアルゴリズムを4種類用意しています。 遺伝的アルゴリズム(Genetic Algorithm, GA):パラメータを遺伝子と見立てて、淘汰、交叉、突然変異を組み換えすことでパラメータを探索する。 ラテン超方格サンプリング(Latin HyperCube Sampling, LHS):層別サンプリングの一種で、各パラメータをn個の区間に分割し、区間からランダムに値を取り出してパラメータを探索する。 ベイズ最適化(Bayesian Optimization):説明変数と予測の間にブラックボックス関数があると仮定し、ブラックボックス関数のパラメータの分布を探索する。 ランダムサンプリング(Random Sampling):ランダムにパラメータの値を選択して探索する。 探索アルゴリズムを詳しく説明していると終わらないので説明を短くまとめました。SAS Viyaではいずれかのアルゴリズムを利用してオートチューニングを実行することができます。   今回はPythonからSAS Viyaを操作して、オートチューニングを試してみたいと思います。 まずはPython SWATをimportし、CAS Sessionを生成してデータをロードします。 # PythonからCASを操作するためのSWATライブラリをインポート import swat   # mysessionという名称のCASセッションを作成 mysession = swat.CAS(host, port, user, password)   #

Machine Learning
SAS Viyaのチートシートを作ってみました。

SAS Viyaでは購入前に使い勝手を試していただくため、無償使用版を提供しています。 https://www.sas.com/ja_jp/software/viya.html#preview もう試していただいた方もいらっしゃるかもしれませんが、SAS StudioやJupyter Notebook、Visual AnalyticsからSAS Viyaを操作して、データマイニングや機械学習を便利に試していただくことが可能です。 この無償使用環境では動作確認済みのデモプログラムを提供していますので、機械学習やプログラミングに不慣れでも迷うことはありません。   しかし機械学習を実業務で使い始めようとすると、どのプロシージャやメソッドを使えば良いのか、わからなくなることが多々あります。 SAS Viyaでは機械学習ユーザに不足ないよう、多種多様なプロシージャを提供していますが、プロシージャが増えるとどの場面でどれを使うんだっけ?と迷ってしまいます。   そこで、SAS Viyaのチートシートを作ってみました。 このチートシートを使えば、用途にあわせて必要なプロシージャを選択していくことができます。 SAS Viyaが提供するプロシージャから重要なものを掲載しています。   SAS ViyaはSAS PROCとActionsetという2種類のプログラミング仕様があります。 チートシートもPROC用とActionset用で2種類作りました。   PDF版は以下にありますので、ぜひご参照ください。 viya_cheat_sheet_20170721_jp