テクノロジー

Analytics | Artificial Intelligence
0
AI時代にSASが示す新たな価値は

AI時代におけるSASの新たな価値 ~40年の信頼を礎に、日本市場で描く成長戦略~ 2025年8月25日付の週刊BCNでは、日本法人代表の手島主税とSAS米国本社のグローバルチャネルセールス担当VP スーザン・デュシュノーへのインタビューを通じて、AI時代におけるSASの進化と国内戦略が紹介されました。以下にその要点をまとめました。 [週刊BCN掲載記事] https://www.weeklybcn.com/journal/feature/detail/20250828_211479.html ■ 意志決定を支える「アナリティクス」の本質 SASは50年にわたりアナリティクスのリーディングカンパニーとして企業の意志決定を支えてきました。 日本法人代表の手島主税は、「アナリティクスとは単なる分析ではなく、人が意志決定に至るまでのプロセス」と定義。データそのものに価値はなく、意味を持たせて初めてインテリジェンスが生まれると強調しています。 ■ SAS Viya:先進的なアナリティクス・プラットフォーム 「SAS Viya」は、データ準備からAIモデルの構築・運用、意思決定の自動化までを一貫して支援する次世代のアナリティクス・プラットフォームです。クラウドやオンプレミスなど多様な環境に対応し、業務別の分析モデルも活用可能。AIと統計解析の因果検証力を組み合わせ、より精度の高い意志決定を支援します。 ■ 日本市場での成長と課題解決へのアプローチ 日本法人は現在「過去最高の規模で成長中」。既存ユーザーのデータ活用が進む一方で、新規ユーザーの獲得も順調。SASは、ビジネス目的から逆算したデータ整理・保存・分析モデル構築の支援を通じて、データを「価値創出のレイヤー」へと引き上げることを目指しています。 ■ パートナー戦略:多様な連携でエコシステムを構築 ISVやSIer、コンサルティング企業など多様なパートナーと連携し、それぞれの強みを活かしたエコシステムを構築中。SIerにはコンサルティングスキルの育成支援も行い、「市場に合わせたパートナー戦略」を推進しています。 ■ SAS米国本社の視点:日本市場は「極めて重要」 SAS米国本社のグローバルチャネルセールス担当VP スーザン・デュシュノーは、日本市場を「固有のニーズに適合した戦略が必要な重要市場」と位置づけ。AIの倫理的活用や中堅中小企業支援にも注力し、グローバル戦略と日本の成功事例の相互展開を視野に入れています。

Advanced Analytics | Analytics | Artificial Intelligence | Customer Intelligence | Data Management | Machine Learning | SAS Events | Students & Educators
0
SAS Innovate on Tour Tokyo 2025 開催のご報告

2025年7月24日(木)に開催された「SAS Innovate on Tour Tokyo 2025」は、大盛況のうちに無事閉幕いたしました。ご来場いただいた皆さまに、心より御礼申し上げます。また、スポンサーの皆さま、そして運営・制作・広報をはじめとする関係各位の多大なるご支援とご尽力に、深く感謝申し上げます。 開催報告として、弊社代表 手島 主税からの基調貢献に関するメッセージを以下に投稿させていただきます。   SASジャパン創立40周年を迎える節目の年に開催致しました「SAS Innovate on Tour Tokyo 2025」ですが、私が代表を担当させていただいてから3度目となりました。この3年間、毎年ご来場いただく規模が増えておりまして、今年は過去最大の規模で終えることができました。改めまして皆様に心から感謝申し上げます。 意志決定と人との関係性の力をデータ&AIで紐付ける、「人中心型イノベーション」のビジョンのもと、意志決定に携わる経営者とフロントラインワーカー(営業、マーケティング、工場長、主計など)が求める具体的なテーマでお届けしました。 SASは「データはそれ自体では価値を生まない。価値を生むのは意志決定である」という信念のもと、多様化したAIのモデルを統計的な手法と機械・強化学習の組み合わせを実行できる高度なアナリティクス技術を進化させてきました。重要なのは、データをいかに意志決定に結びつけ、行動変容を促すかという「プロセス」です。 私たちが提唱する「意志決定のデータパイプライン」は、ビジネス部門の課題提起から逆算して必要なデータを整備するアプローチです。システム先行ではなく、人の知見や問いを起点にすることで、真に活用されるデータ基盤を構築できます。SASは、意味付けされたデータを各部門に合わせて提供し、お客様の意志決定を支援しています。 今年の基調講演では、日本を代表する経営者、DX推進リーダー、アカデミアのリーダーの皆様とスペシャルゲストとしてお迎えし、示唆に富んだパネルディスカッションを実施しました。 最初のパネルでは、ソニー銀行様、中国銀行様、東京海上ホールディングス様の経営リーダーがご登壇。 益々過去に無い規模でデータが生成されていく時代になり、企業の価値を創り出す宝探しである。またこれから現場への権限移譲とデータリテラシーの底上げを進めながら、最終的な価値を生むのは人のシナリオ、判断力であることが改めて強調されました。特に印象的だったのは、金融商品に“共感価値”を織り込むという発想の転換。金融を単なる機能価値から、人の感性に響く体験へと昇華させる挑戦が語られました。 [パネルディスカッションご登壇者(※登壇順)] ソニー銀行株式会社 南 啓二様 株式会社中国銀行 山縣 正和様 東京海上ホールディングス株式会社 生田目 雅史様 株式会社ソウジョウデータ 西内 啓様 未来の学びの探求’Future Ready’のパネルでは、統計学で多くの著書、大学での教えも推進されてきている西内先生をお迎えし、「問いを立てる力」がAI活用の出発点であること、そして経営から現場まで“問い→仮説→検証”のリズムを組織全体で回すことの重要性が共有されました。 また、アストラゼネカ堀江様、NSW竹村様にもご登壇頂きました。 堀江様には最新のSASのテクノロジー、AIを活用いただいたモダイナイゼーションによるコスト最適化とフロントワーカーの効率性アップの具体的な事例をご紹介いただき、多くの方に反響を頂きました。 [関連記事] アストラゼネカが目指す医療・創薬の新たなステージ──実現に不可欠なデータサイエンス部の役割とは? 竹村様には、新たなSASとの製造業界向けの戦略的パートナーアライアンスの発表をご披露いただき、昨今の製造業界における課題へのソリューション(工場と経営DX)をご紹介頂きました。これからの両社によるパートナーシップに弊社も大きく期待しております。 [関連記事] NSW株式会社様との協業の発表について - SAS Japan 私個人的にも、日本を牽引する各業界のリーダー皆様の志、視座の高さ、人間力に感銘致しました!!改めまして、南様、山縣様、生田目様、堀江様、竹村様に感謝申し上げます。皆様のビジョンの具現化の力になるべく、引続きSASジャパンも社を挙げて果敢に挑戦してまいります。 これからのSASジャパンに乞うご期待ください。 SAS Institute Japan株式会社

Advanced Analytics | Analytics | Artificial Intelligence | Customer Intelligence | Data for Good | Data Management | Data Visualization | Fraud & Security Intelligence | Internet of Things | Learn SAS | Machine Learning | Programming Tips | Risk Management | SAS Administrators | SAS Culture | SAS Events | Students & Educators
小林 泉 0
📣SAS Hackathon 2025 まもなく開幕(応募〆切8/31)📣

SAS Hackathon 2025が間もなく開幕 公式サイトはこちら☞ https://www.sas.com/sas/events/hackathon.html はじめに 課題、テーマや使用データ 課題やテーマ、使用データは参加者ご自身で準備いただきます 2023年の日本からの参加チームは、オープンデータを使用したチーム、普段の自社内の取り組みプロジェクトのデータを使用したチームなどがありました 分析環境や、専門スキルの支援などはSAS側で用意されます コミュニケーションに使用する言語 日本からの参加者をサポートするメンターはSAS Japanから日本語を話す社員が担当する予定ですが、エキスパートや他の参加者との交流は英語になります 成果物に使用する言語 成果物(プレゼン動画やプレゼン資料、アプリケーションなど)は英語になります。昨年の日本からの参加チームはそれぞれ、英語でのプレゼン、無音声英語文字のみのプレゼン、英語機械音声など様々な方法で対応されました 作業場所 オンラインでの約1か月間の作業なので、作業場所は、参加チームそれぞれで確保いただきます 2025 キックオフイベントの様子 ソーシャル メディア プラットフォーム経由で視聴する LinkedIn☞https://www.linkedin.com/events/7333469635326984193/ Youtube☞https://www.youtube.com/live/yp008_MVfF4 SAS Hackathonとは 好奇心は私たちの規範です 素晴らしいアイデアは、どこからでも誰からでも生まれます。さまざまな地域から、さまざまな背景やスキルレベルを持つデータ愛好家が集まると、驚くべきことが起こります。これらの優れた頭脳は、私たちの日常生活、ビジネスのやり方、人道的活動への取り組み方を変えるような新しいものを発明するでしょう。好奇心旺盛な頭脳が協力し合うと、世界が勝利するからです。 特長 仲間のプログラマーと協力する  経験豊富なデータ サイエンティストから初心者の技術者、パートナー、SAS エキスパートまで、誰もがクラウド上の SAS® Viya でオープン ソースを使用します。 無料の学習リソースを活用する トレーニング コースや仮想学習ラボを利用して、AI、クラウド環境、業界に関するコーチングを活用できます。 新しいテクノロジーを簡単に試すことができる SAS ハッカソンは、SAS ユーザーだけでなく、初心者や新規参入者の好奇心を刺激します。Python と R の専門知識を持つオープンソース プログラマーでも、そのスキルを SAS Viya

Advanced Analytics | Analytics | Artificial Intelligence | Data Management
小林 泉 0
自由と統制:変化しながらもガバナンスを担保するための唯一無二のData & AIプラットフォームとは

競争に勝つためのData & AI プラットフォームに完成はない 「ガウディとサグラダ・ファミリアに学ぶデータ分析基盤アーキテクチャのための原則」で考察したように、変化し続ける市場や消費者、経済環境において、企業・組織が意志決定する対象やその内容は刻々と変化していきます。また、よりよい意志決定のためのData & AI活用のためのテクノロジーも日々変化していきます。そのような環境においては、従来のようなある一時点のユーザー要件に基づいてData & AI環境を準備することは、企業・組織の俊敏性を損ない、まだ見ぬ将来への変化対応力(レジリエンシー)を弱め、結果として常に世の中のトレンドから大きく遅れた後追いのData & AI活用になってしまいます。例えば以下のような状況に陥っているとすると、それはその企業・組織の戦略がそのような常に後追いにしかならない方法論で進めていることになります。 「データ統合基盤」の過ち:あらたに「データ統合基盤」(*1) を構築しようとするが蓄積するデータが決まらずプロジェクトが開始できない、あるいは完了しない。また完了したと思ったのに使われない。 「Data Lakehouseツール」の過ち:アジャイル型を標榜して、クラウド型の「Data Lakehouse用」のデータベースを安価に採用したが、ユーザーの利用が進むにつれてより多くのデータが必要になってきたときに、そのデータベースのコストが指数関数的に膨れ上がる価格モデルであったため、必要なデータが結局蓄積できないという結果になった 「簡易なデータ分析ツール」の過ち:上記と同様にクラウドプラットフォームにほぼ無償でついてくるAI/機械学習機能でデータ分析をスタートする企業も多いです。しかし多くの企業が「データ分析始めました」の域を出ることができず、真にビジネス課題を解決するための機能が足らないことに気づかないまま、データ分析とはこの程度のものだと思い込み、結果として「始めましたプレゼンテーション」を最後に、真にビジネス価値を創出した事例発表に至ってない。 「AIガードレールツール」の過ち:生成AIのテクノロジーを活用して、自社のビジネスを成長させたいが生成AIを安全に使うためのAIガードレールツールを選定したが、いざ導入してみると、そもそも生成AIを活用してビジネス価値を出す案件がなかったり、あるいはテクノロジーの進化が速いために、必要なガバナンス機能がすぐに変わってしまい、当初の投資金額だけでなく、その投資にかかった時間や人的リソースが無駄になってしまった 「データモデル」の過ち:過去の経験のベストプラクティスとしてのデータモデルを導入したが、ある時点のデータモデルとして完成しすぎていて、新たな市場の要件に対応するために新たなデータを追加しようとした際に、対応できなかった 「機能特化型パッケージツール」の過ち:たとえば、金融不正対策アプリケーションにおいては、不正の手法が常に変化する中対策に必要なデータやアルゴリズム・手法をどんどん変化させていく必要があるが、限定的なデータモデル、限定的なアルゴリズムしか持たないツールを採用してしまったために、不正対策をスピード感をもって進化させられていない *1) データ統合基盤の過ち補足:そもそも日本市場・日本語でよく聞く、この「データ統合基盤」という言葉が過ちを生み出している元凶でもあります。データ・マネージメントの目的は、「欲しいときに」、「欲しい形で」、「欲しい品質で」、「欲しい人が」特定のビジネス課題を解決するという目的を達成するためにデータを活用できることです。必ずしも一か所にデータが蓄積されている必要はありませんし、データは膨大なため利用頻度や重要度に応じて格納の仕方を変える必要もありますし、目的に応じて必要なデータやその結合の仕方も変わるため、「あらかじめ統合」しておくことにもあまり意味がありません。もちろん、過去データウェアハウスの時代には、一時的に企業の構造化データを一貫性をもってER図的に定義・実装したデータモデル・データベースが非常に役立った時代もあります。特にそれはアドバンスト・アナリティクスというよりは、レポーティングやOLAPによるデータ探索目的に役立ちました。一方で、機械学習や最適化などアルゴリズム的に高度なデータ分析や、昨今のように非構造化データを扱う場合には、常に新しいデータを使いたくなることが多く、あらかじめデータモデルで定義しておくことの価値は低くなります。 なぜ常に時代遅れになりがちで、AIの取り組みの役に立たないData & AIプラットフォームを構築してしまうのか? 上記のような様々な過ちに企業陥ってしまうのはなぜでしょうか? 20年ほど前は一部のアナリティクス成熟度が高い(例えばこちらを参照ください データリテラシーが経営者の嘆きを救う)企業だけが、解決したいビジネス課題とそれを解決した時の期待効果の試算に基づいてあるいは野心的に大規模にData & AIプラットフォームへの投資を、ユーザー部門が主に自分たちの予算で企画・導入していました。 その後、テクノロジーの進化と共に、プログラマーニーズ、あるいはプログラミングを主たる作業とするデータサイエンティストニーズの高まりにより、データ分析、データサイエンスの取り組みのオーナーがあたかもIT部門やアプリケーションデベロッパーかのような時代になり、Data & AIプラットフォーム投資の意志決定のオーナーがITサイドに移動しました。 手段であるIT、データサイエンス、機械学習やプログラミングの底力が高まるのは良いことなのですが、それにより、「ビジネス課題解決(収益向上・コスト削減・リスクの管理)」というData & AIプラットフォームの目的定義がおざなりになり、あたかもERPを導入するかのような要件定義の仕方でData & AIプラットフォームへの投資の仕方に代わってしまいました。従来は目的ありきで作っていたものが、流行にのって作ってしまってから、後から使い方を考えるという世界に変わってしまったのです。データ統合基盤を作ったのに使われないという嘆き(前述の別ブログを参照のこと)はまさにその象徴です。 一方で、昨今の責任あるAIの視点から、ビジネスニーズに沿ってなんでもかんでも自由にやっていいわけではない 少し前までは、AIは、「人間の特定のタスクを置き換えるもの」という定義でしたが、昨今は違います。AIは人間とは異なる方法で知性を身につけており、ときにそれは人間の能力をはるかに超える能力を発揮します。言い換えると、AIは人間の理解ややり方が及ばない方法で、知的なアクションを行えるようになっています。これは次のようなことを意味しています。 人間の仕事が奪われるという視点は近視眼的:AIはすでに人間とは異なる方法で知性を身につけているので、従来の人間のタスクをそのまま置き換えるわけではありません。もちろんAIの能力を過小に使用して人間の従来のタスクをやらせても良いかもしれませんが、それはAIの潜在能力を生かし切っていません。これまで人間にはできなかったことができるAIを、これまで人間がやってこなかった仕事の量や質に当てはめて、仕事の仕方を効率化するのではなく、「変革」することができるという視点が重要です。 我々は人間社会をより良くする必要がある:一方で、人間の能力を超えた知性を人間の社会活動に取り入れることには最新の注意が必要です。人間の能力を超えた知性を人間の知性で開発されたテクノロジーだけで統制することは不可能です。かつて人間は様々な人間の能力を超えたものを開発してきました。例えば自動車です。自動車の利用を統制するには法律やルールが必要だったように、AIの利用を統制するためにはテクノロジーだけではなくルールや法律が必要になってきます。 人間中心のAI活用には人間のインクルージョンが不可欠:教育機関が生徒不在で「生徒はこれが欲しいはずだ」という取り組みを実施して失敗したり、イベントやマーケティングにおいて企画フェーズに実際のオーディエンスを参加させずに(実際の声を反映させずに)企画者が勝手に良かれと思った企画が失敗に終わるケースは後を絶ちません。オーディエンスが画一的ではなく多様化している今の時代「インクルージョン」が非常に大事になってきています。これは、SAS社が提供する責任あるイノベーションのためのリテラシートレーニング(Responsible Innovation and Trustworthy AI)で学ぶ内容です。AIにはデータが必要なため適切なリテラシーがないと現実世界を切り取っただけのバイアスだらけのデータだけを真実と見なしたAIアプリケーションが構築され、人間社会の倫理と公正性が危険にさらされます。AIアプリケーションの開発プロセスに人間が介在できるData & AIプラットフォームが求められます。 Data &

Analytics
0
📣2025/4/7開催📣 PharmaSUG Japan SDE 2025/SAS登壇のご案内

PharmaSUG Japan SDE 2025が今年は対面で開催されます。 本イベントは、製薬・医療データに関する最新のトピックや実践的な知見を共有する絶好の機会です。 SAS Institute Japanもこのイベントに登壇し、臨床試験やリアルワールドデータの分析生産性と コラボレーションの強化についてご紹介いたします。ぜひご参加ください。 💡 開催概要 •日時:2025年4月7日(月)10:00-18:00 (9:30受付開始) •会場:中外製薬株式会社 •参加費:75 USD(Winter Webinar登録者は50 USD) •主なプログラム PharmaSUG SDE Japan 2025 – PharmaSUG •オープンソースとAIの活用 – 製薬業界における最新の技術動向 •CDISC標準の実務適用 – 規制対応に関する最新情報 •Japan Programming Head Councilによるパネルディスカッション – 業界課題と今後の展望 🔷SAS Institute Japan 講演 •登壇者: 土生 敏明 Sr Business Solutions Manager, Architecture & Platform Solution

Analytics | Artificial Intelligence
0
クラウドにおける AI と分析の環境への影響の調査

SASクラウドエコノミクスおよびビジネスバリューチームのSpiros PotamitisとFrancesco Raininiがこの記事の執筆に協力しました。2023年11月16日に公開された英語の記事を翻訳しております。 クラウド コンピューティングは数え切れないほど多くの業界のバックボーンとなり、組織が分析、機械学習、AI の力を活用して洞察とイノベーションを実現できるよう支援しています。 クラウドコンピューティングの急速な拡大により、クラウドは大きな二酸化炭素排出量を生み出すようになりました。背景として、クラウドは世界の二酸化炭素排出量の最大 4%を占めると計算されており、これは航空業界が排出する量よりも多いと考えられています。 これに対して何ができるでしょうか? オンプレミスの展開についてはどうでしょうか? クラウドとオンプレミスの議論に関しては、大手市場調査会社である IDC は、コンピューティングリソースの集約効率が高いため、オンプレミスと比較してクラウドの方が環境に優しい選択肢であると主張しています。したがって、AI と分析のワークロードをクラウドに移行するのが環境にとって最善の方法であると言われています。 クラウドでの効率を向上できる組織が増えれば、累積的な影響を考慮すると、小さな改善でも大きな違いを生む可能性があります。 SAS® Viya®と環境 SAS Viya は、  5 年間で最大 50 トンの CO2eの炭素排出量を削減する可能性があります。成長した木がこの量のCO2eを吸収するには 4,513 年かかると言われています。     カーボンフットプリントを楽しく探る 様々な要点を総合的に考慮し、Viya の潜在的な環境的利点を計算するために、私たちはGreen Algorithm Calculator を使用しました。これは、計算ワークロードの二酸化炭素排出量を推定して報告するツールです。計算を完了するために、さまざまな Azure Cloud アーキテクチャにわたる 1,500 を超えるテストを含むFuturum ベンチマーク調査の数値を使用しました。この調査では、Viya がオープンソースや主要な代替手段と比較して平均で 30 倍高速であることが示されています。 私たちは、大規模な組織に典型的なインフラストラクチャと分析のワークロードを想定しました。同時に、Futurum の調査で使用された技術的設定を反映しているため、計算に自信を持ってメリットの数値を適用できます。 グリーンアルゴリズム 計算機を使用して計算するには、次の手順に従います。 実行時間から始めます。50 人のデータ

Advanced Analytics | Analytics | Artificial Intelligence | Customer Intelligence | Data Management
0
保険業界向けインタラクティブセッション「新しい保険ビジネス創造に向けた事例と成功要因」を開催!【SAS Institute Japan】

2024年5月31日(金)、SAS Institute Japanは、「保険業界向けインタラクティブセッション 新しい保険ビジネス創造に向けた事例と成功要因」 を六本木ヒルズ森タワー11階のSAS Institute Japan本社で開催した。 開会挨拶 保険業界においても顧客ニーズは多様化、高度化している。たとえば、生保ではウェルビーイングのような包括的な顧客ニーズを充足することが求められている。そして、顧客ニーズを充足するためのエコシステムが台頭し、保険商品がエコシステムに組み込まれ、顧客の生活の中でフリクションレスに保険や関連サービスが提供されるようになっている。今、保険会社はどのように新しい商品・サービスを開発し、マーケティングを実行すべきなのか。本イベントでは、保険業界で実際に多数のイノベーションやCX変革に関わっている有識者をゲストに迎え、今取り組むべき課題やその実際を議論していく(SAS Institute Japan カスタマアドバイザリ事業本部 原島 淳氏)。 セッション1:保険業界におけるビジネスアーキテクチャの転換  まず、福島 渉氏(デロイトトーマツコンサルティング 執行役員 保険インダストリリーダー)が「保険業界におけるビジネスアーキテクチャの転換」について話した。  「これまで世界の保険業界において、ランキング上位企業の顔触れは大きく変わってこなかった。100年以上の歴史を持つ保険会社がランキング上位を占めている。それは従来の保険会社はバリューチェーンの各機能を内製化しており、それぞれの知見や能力が競争優位性の源泉であり、また参入障壁になっていたからだ。大手企業は、潤沢な資本を背景とした価格形成力を持ち、販売網を張り巡らせ、そして高い引受・査定能力により収益を維持してきた。 しかし、今日ではバリューチェーン各機能の分立と共有化が進んだことで、この構造が崩れ始めている。保険会社のビジネスモデルは多様化しており、また水平横断的機能提供を狙うプラットフォーマーが出現している。各保険会社は自らの強みを活かしながら、フィナンシャル&ヘルスマネジメント型、経済活動のあらゆるリスクをカバーするフルスペック型、ドメインフォーカス型、もしくはプダクトファクトリー型といったビジネスモデルを選択していくことになると予測する。また、機能特化/集約型プラットフォーマーとして、データアナリティクス、カスタマーエンゲージメント、キャピタル&インベストマネジメント、ITテクノロジーのプラットフォーマーが出現してくるだろう。たとえば、資産運用プラットフォームBlackRock、”Technology as a Service”のOneConnectといった企業はそれに当たる。保険会社はこういったプラットフォーマーを活用することも重要だ。  このような潮流を受けて、保険業界のビジネスアーキテクチャは変化している。これまでは、単一の商品を効率的に販売する”代理店モデル”が主流だった。しかし、これからは商品・サービスとチャネルをターゲット顧客に応じて最適な形で組み立てていくことが重要だろう。前述のような機能プラットフォーマーが提供する”モジュール化”された機能を自社の商品・サービスやチャネルと組み合わせることで新しいビジネスモデルを定義し、多数の顧客セグメントに効率よく価値提供することも可能だ。たとえば、よく知られるエンビデッド保険や、シンガポールIncomeのSNACKの革新的なサービスもその一例だ。  今日の保険業界ではスピーディーなイノベーションが強く求められている。イノベーションを加速させるには、モジュール化された機能を組み合わせることで、商品・サービスをスピーディーにプロデュースする能力が重要と言える。これからの保険会社に求められるのは、ブランド価値とビジネスケースの仮説構築力と、それをもとに商品・サービスをアジャイルで構築できる新しいテクノロジー基盤、そこで仮説検証を高速で廻せる業務プロセスである。今日の保険会社には、商品・サービス開発、マーケティング、テクノロジー、そして全体のガバナンスの各領域で、”モジュール”を活用したスピーディーな競争優位性の創造が求められている。」 セッション2:三井住友海上におけるCXマーケティングとデータ活用の取り組みについて  では、保険会社では実際にどのように商品・サービスを開発し、マーケティングを行っているのだろうか。続いて、佐藤 祐規氏(三井住友海上 CXマーケティング戦略部 データマーケティングチーム長)が「三井住友海上におけるCXマーケティングとデータ活用の取り組みについて」と題して、実際の取組みを紹介した。  「言うまでも無く、保険業界を取り巻く環境は大きく変化した。お客さまが自ら必要な情報を選択する時代では、事故補償時だけの関係性から脱却しなければならない。CXマーケティング戦略部では、お客様ロイヤルティ大手損保No.1を目指している。このためには、顧客接点を増強すること、そして、データ分析やリサーチを通してお客様の解像度を高め、お客さまごとのコミュニケーションを実施することで、新規獲得手法を高度化し、またお客さまの期待を超える体験価値を提供することが重要だ。そして、そのためにはデータ分析やデータ活用が欠かせない。  当社ではマーケティング領域のデータ活用を強化しているが、いくつかの取組事例を紹介する。まず、ドラレコ付き自動車保険のクリエイティブ開発の事例だ。従来、クリエイティブ開発は商品所管部門が担当しており、モノの視点(機能的価値)からの価値訴求が多かった。しかし、実際にお客さまへの訴求を行っている代理店への調査を行ってみると、お客さまは加入後の体験とそれによる安心に価値を感じていることがわかった。そういった体験価値の視点からプロトタイプを作成し、ターゲット層にアンケート調査を行うことでブラッシュアップを行い、より評価の高いクリエイティブを作成することができた。 この事例のように、消費者調査を行なうことで顧客のニーズや求められる価値を理解した上で、商品・サービス開発を進めている。お客さまに選んでいただくためには、良い商品を開発するだけでなく、当社の認知度や好感度、さらに契約体験や事故体験も重要な要因となる。それぞれの体験や認知が契約にどの程度寄与するのかも分析を行っている。 こういった分析を通してマーケティングミックスを最適化するために、弊社ではCDP(Customer Data Platform)を構築し、お客様起点で属性、契約、行動、調査、事故の情報を統合、活用している。この情報は代理店にも還元していて、代理店向け営業支援システムにNBA(Next Best Action)情報を配信している。  今後の方向性として、保険会社はプロダクト中心の発想から抜け出し、カスタマージャーニーにおける価値を中心に考える必要がある。顧客との接触頻度を拡大すべきだが、無意味な拡大は逆効果で、適度な距離感を持って、有用なコミュニケーションを行っていくことが重要だ。そのためにはお客さまの文脈を押さえた(”ジョブ理論”にもとづく)コミュニケーションが欠かせない。現在、ChatGPTを活用しながら、ジョブ理論にもとづくクリエイティブ開発を進めているが、こういった施策を通してCX向上を目指したい。保険会社の商品・サービスは今後拡大していくだろうが、差別化の最大のポイントはCXだと考えている。」 セッション3:保険イノベーションをサポートする新しいSASテクノロジと事例  こういった保険業界のイノベーションやCX高度化に求められるテクノロジーとは何か。原島 淳氏(SAS Institute Japan カスタマアドバイザリ事業本部)が「保険イノベーションをサポートする新しいSAS」と題して、SASが提供するテクノロジーと海外でのその活用事例を話した。  「保険会社は今、新しい商品・サービスとそのマーケティングモデルをスピーディーに創造していくことが求められている。競争力の源泉としてデータとAIを活用し、また新しいマーケットプレイスやテクノロジー企業が提供する”モジュール”との連携も重要だ。 SASはデータから価値実現のプロセスをEnd-to-Endでサポートし、アジャイルにも対応している。また、あらゆるシステム/モジュールとリアルタイムで統合可能なオープン性を持つ。SASを活用することで、データ・AIを活用した判断をカスタマージャーニーに組み込み、顧客体験を最適化できる。たとえば、外部ウェブサイトの顧客行動をリアルタイムで捕捉・分析し、最適な保険・サービスを最適な保険料で提案。申込があれば本人確認を行い、自動引受査定を行い、スピーディーに契約のご案内を行う、といった形で、業務横断のデータ・AI活用が可能だ 保険業界においてもSASを活用した事例は拡大している。その中から、(1)新しい商品・サービスをスピーディーに創造している事例、(2)優れたCXを提供する顧客接点を構築している事例、(3)業務横断の高度なデータ・AI活用を実施している事例を紹介したい。 まず、(1)海外ダイレクト保険プラットフォーマーでは、多数の外部パートナーに対し、APIを通して豊富な商品とSASで開発されたカスタマーエンゲージメントプラットフォームを”モジュール”として提供する。このプラットフォームはスケーラブルで、かつスピーディーに拡張できる点が特徴であり、多数の外部パートナー向けのエンベデッドの保険の提供や、金融・小売といった多数の販売パートナーとの提携によるマーケティングモデルの展開をサポートしている。次に、(2)カナダSun Lifeでは、デジタルアドバイザ”Ella”がアマゾンエコーなどのインターフェースを通して顧客のライフスタイルをサポートしながら、各種データにもとづいて健康や資産運用のための様々なナッジを提供している。(3)海外保険会社の中小企業向け保険のアンダーライティングでは、引受リスクだけでなく、保険+予防予後サービスを含むトータルの顧客LTVを加味して最適な提案(NBO=Next

Analytics | SAS Events
0
SAS Hackathon Boot Camp in Las Vegas / チーム SHIONOGI 参加・入賞報告

4月16日-19日に開催されたSAS Innovate in Las Vegasにて、SAS Hackathon Boot Campが行われました。 日本からは塩野義製薬様が参加され、見事3位入賞いたしました。🎉 本記事では塩野義製薬様のチャレンジの様子や、いち早くSAS Viya Workbenchを利用した感想をお伝えします。 また、7月17-18日に開催予定のSAS Innovate in Tokyoでは、2日目にHackathon Boot Campが行われます。 ぜひこの記事を参考にし、皆様のチャレンジをお待ちしています。 SAS Hackathon、SAS Viya Workbenchに関する各種リンクは以下をご覧下さい: SAS Hackathon Boot Camp in Tokyo  (SAS Innovate Day2):Here ※参加登録時、ハッカソン参加希望をチェックください。 SAS Hackathon:Here SAS Viya Workbench:Here チーム SHIONOGI ? 今回SAS Hackathon Boot Campへ参加したのは、データサイエンス部の4名です。 参加された4名は、医薬品の有効性・安全性を確かめる臨床開発をはじめ、医薬品の研究~販売のすべてのバリューチェーンにおいて、データサイエンスの側面から業務プロセスの改革へ取り組まれています。 塩野義製薬様エントリーの背景 日頃から仮説(臨床試験/ビジネス)に対しデータサイエンスを使い向き合っていますが、3時間という限られた時間の中で普段扱わない業界・テーマへ向き合うことは、我々の実力試しが出来るいい機会と考えていました。 日々様々な業務テーマ/データと向き合い、高度なデータ活用へ取り組まれている皆さんにとって、Hackathon Boot Campはそれらの総合力と向き合う機会だったと言えます。

Analytics
SAS Viya環境のシングルサインオン設定方法(SAML編) 第2部 - 認証と認可の実装

背景 シングルサインオンのログイン方式(以下はSSO)は、多くのクラウドサービスの中で主流のログイン方法として、多くの利点があります。例えば、パスワードの使用が減少することで、セキュリティリスクを低下させることや一度のログインで複数のサービスやアプリケーションにアクセスできることによる、ユーザビリティの向上等です。 前回の記事(SAS Viya環境のシングルサインオン設定方法(SAML編) 第1部 - 基礎と準備)では、Azure ADとの連携でSSOを実現するための基礎概念と準備作業を紹介しました。本記事の第二部では、SAS Viyaのユーザーが運用や作業を行う際の参考となるよう、Azure ADとの連携でSSOを実現するための設定方法を下記のドキュメントの内容を基に整理することを目的としています。実際の設定を行う際は、常に最新バージョンのドキュメントを参照することをお勧めします。これにより、最新の情報に基づいた適切な手順で作業を進めることができます。 SAS Viyaドキュメント:SCIMの設定方法 SAS Viyaドキュメント:認証の設定方法 以下は本記事内容の一覧です。読者は以下のリンクで興味のあるセクションに直接ジャンプすることができます。 1.Microsoft Entra IDの作成 2.SCIM認可管理の設定 3.SAML認証の設定 1. Microsoft Entra IDの作成 1-1. 構築済みのSAS Viya環境とAzureのActive Directoryを連携するには、Azure側でAD Enterprise Appとアプリの管理者権限が必要です。 Azureポータル上で、「Microsoft Entra ID」と検索し、サービスを選択します。そして、左側メニューから「エンタープライズ アプリケーション」をクリックすると、既に登録したアプリの一覧画面が表示されます。新しいアプリを作成するために、画面上部の「新しいアプリケーション」ボタンをクリックします。その後に表示された画面の左上の「+独自のアプリケーションの作成」をクリックします。 1-2. アプリケーションの作成画面で、アプリの名前を設定し、「ギャラリーに見つからないその他のアプリケーションを統合します (非ギャラリー)」のオプションを選択し、「作成」ボタンをクリックします。 1-3. アプリの画面内で、左側の「Owners」をクリックし、アプリのオーナーが申請したユーザと一致しているかを確認します。これで、Microsoft Entra IDの作成は完了しました。 2. SCIM認可管理の設定 2-1. SAS Viyaのデフォルト認証方式はLDAPです。SSOログイン方式を利用するには、認証方式をSCIMに変更する必要があるため、まずはLDAPを無効にします。 ①sasbootユーザでSAS Viyaの環境管理画面にログインし、「Configuration」画面で「identities service」を検索し、右側の画面内の「spring」の編集ボタンをクリックします。 ②「profiles.active」からidentities-ldapを削除し、「Save」ボタンをクリックします。 ③右上の「New

Advanced Analytics | Analytics | Artificial Intelligence | Data Management | Data Visualization | Machine Learning | SAS Administrators
小林 泉 0
データ分析プロセス全体を管理~自己組織的に育てるナレッジのカタログ化とは

自己組織化とは、自然界において個体が全体を見渡すことなく個々の自律的なふるまいをした結果、秩序だった全体を作り出すこと 2010年から存在した解決アイディアがついに実現可能に 今から遡ること十数年前の2010年頃、支援をしていた大手製造業の会社ではすでにデータ分析スキルの社員間でのばらつきと組織全体のスキルの向上、データ分析作業の生産性の向上、人材のモビリティへの耐性としてのデータ分析業務の標準化が課題となっていました。 当時ご相談をいただいた私を含むSASの提案チームは、SASが提供するアナリティクス•ライフサイクル•プラットフォームを活用することで、その問題を支援できることがすぐにわかりました。つまり、ビジネス課題から始まり、利用データ、データ探索による洞察、データ加工プロセス、予測モデリングプロセス、モデル、そしてそれをアプリケーションに組み込むディシジョンプロセスという、一連のアナリティクス•ライフサイクルにまたがるすべての作業を電子的に記録し、全体のプロセスそのものをモデリングし、利活用することで、自己組織的にナレッジが蓄積され、且つ活用されるということです。 しかし、当時のSASだけではない周辺のIT環境、すなわちPCやアプリケーションアーキテクチャなどのインフラ、データの所在、セキュリティ管理などがサイロ化していること、またSAS以外のModelOps環境もシステムごとにアーキテクチャがバラバラすぎたこと、また、お客様社内のデータリテラシーそのものもまだ課題が多かったため、SASを中心としても、実現にはあまりにも周辺の開発コストがかかりすぎたために、提案を断念しました。 時代は変わり昨今、クラウド技術の採用およびそれに伴うビジネスプロセスの変革と標準化が急速に進んでいます。それに歩調を合わせるように、SASの製品も、上記の当時から市場をリードしてきたMLOpsフレームワークをDecisionOpsへと昇華させ、クラウド技術を最大活用すべく、クラウドネイティブなアーキテクチャおよび、プラットフォームとしての一貫性と俊敏性を高めてきました。そしてついに最新版のSAS Viyaでは、アナリティクスライフサイクル全体にわたり、データからデータ分析プロセス全体の作業を電子的に記録し、管理し、活用することが可能となりました。 自己組織的にナレッジを蓄積活用するデータ分析資産のガバナンス 昨今のデータマネージメントの取り組みの課題 詳しくはこちらのブログをご参照いただきたいのですが、多くのケースで過去と同じ過ちを繰り返しています。要約すると、データ分析文化を醸成したい、セルフサービス化を広めたいという目的に対しては、ある1時点のスナップショットでの完成を目的としたデータカタログやDWH/DMのデータモデル設計は問題の解決にはならないということです。必ず5年後にまた別の担当者やプロジェクトが「これではデータ分析しようにもどのデータを使えばわからない、問題だ、整備しよう」となります。 では解決策はなんでしょうか。 静的な情報を管理したり整備するのではなく、日々変わりゆく、どんどん蓄積され、評価され、改善、進化し続ける、データ分析業務に関わるすべての情報を記録統制することです。つまり、以下の三つのポイントを実現することです。各ポイントの詳細は後段でご紹介しています。 ポイント①あらゆるデータ分析資産(ナレッジ)を管理 ポイント②データ品質管理の自動化・省力化とガバナンス ポイント③社内ソーシャルの力による自己組織的情報の蓄積 まずは、それぞれが何を意味しているかを説明する前に、これらを実現するとどのような世界になるのかをユーザーの声によって示してみたいと思います。   個々の自由にデータ分析をしているユーザーによる行動を記録することで、全体を見渡している誰かがヒアリングや調査をして情報を管理することなく、データ分析がどのように行われているかを管理・共有・再利用が可能となるのです。 誰が、どのような目的で、どのデータを、どのように使用したのか、そしてその結果はどうだったのか? このアプリケーションの出した判定結果の説明をする必要がある。このモデルは誰が作ったのか?どのような学習データを使用したのか?どのようなモデリングプロセスだったのか? よく使用されるデータはどれか? そのデータはどのように使用すれば良いのか?注意事項はなにか? データ分析に長けた人は誰か?誰が助けになってくれそうか? 企業全体のデータ品質はどのようになっているか? データ品質と利用パターンのバランスは適切か?誤った使い方をしているユーザーはいないか? など従来、社内勉強会を開催したり、詳しい人を探し出してノウハウを聞いたり、正しくないことも多い仕様書をひっくり返してみたり、そのようにして時間と労力をかけて得られていたデータ分析を自律的に行う際に重要となる社内ナレッジが、自己組織的に形成されるということです。 「情報資産カタログ」とは~一般的な「データカタログ」との違い このような世界を実現する機能をSASでは、「情報資産カタログ」と呼んでいます。データ分析プロセス全体を管理・検索・関連付け・レポートできるようにするテクノロジーです。一般的に言われる、また多くの失敗の原因になる、「データカタログ」と対比するとその大きな違いが見えてきます。 こちらのブログでも述べましたが、データ分析者がセルフサービスでデータ分析を実践したり、初学者がなるべく自分自身で情報収集して、まずは標準的なデータ分析作業をマスターしたりするためには、既存ナレッジを活用する必要があります。一方で、そのようなナレッジは従来一部の優秀なデータ分析者に聞かないとわからなかったり、あるいはITシステム部門に質問して回答までに長い時間を要してビジネス機会を逸してしまう、という結果を招いていました。 既存ナレッジとは、どのようなデータを、どのような意図で、どのような目的で、どのように使い、どのようなアウトプットを得たかという一連の「考え方とやり方」であり、これは管理者が一時的にデータ分析者にヒアリングして「データカタログ」を整備して終わり、というものではなく、日々データ分析者たちの中で自律的に情報が作られていくものです。 ポイント①あらゆるデータ分析資産(ナレッジ)を管理 SAS Viyaでは、上述のアナリティクスライフサイクル各ステップのオブジェクトがすべて一元的に記録・管理されます。日々、新しく作られるレポート、データ加工プロセス、作成されるデータマートの情報が、自動的に管理され検索対象になっていきます。このようにアナリティクス・ライフサイクルの各ステップをすべて管理することで、データ、そのデータを使用しているレポート、そのデータを使用しているデータ加工フロー、その出力データ、さらにはそれを学習データとして使用している予測モデリングプロセスと作成されたモデル、これらを関連付けて見ることが可能となります。それにより例えば、ある目的に使用するデータを探している場合、参考にする業務名やプロジェクト名で検索をすることで、関連するレポートや、データ加工プロセスにたどり着き、そこから使用データやそのデータの使い方にたどり着くという効率的な情報の探し方が可能となります。 もちろん、この機能は昔からあるインパクト・アナリシス機能として、ITシステム部門が、データへの変更の影響調査ツールとして使用することも可能です。 ポイント②データ品質管理の自動化・省力化とガバナンス データ分析を組織的に行う際に気にすべきポイントの一つは、その正確性です。正しいマスターデータを使用しているか、適切な品質のデータを使用しているかは、最終的なアクションや意思決定の精度すなわち収益に影響します。また、結果に対する説明責任を果たすうえでもアクションに使用したデータの品質は属人的ではなく、組織的に管理されている必要があります。またデータ品質を組織的に管理することにより、データ分析の最初に行っていた品質確認という作業が省力化できます。また、属人的に行っていた品質確認作業も標準化されるため、組織全体のデータ分析作業の品質が向上します。 あるお客様では、DWHに格納するデータのETL処理において施すべき処理が実施されていないというミスがあるものの、データの数やETL処理があまりにも多いためそのミスを発見することが困難であるという状況にありました。網羅的な品質管理および品質レポートによってそのようなミスの発見が容易になります。 ポイント③社内ソーシャルの力による自己組織的情報の蓄積 前述のポイント①により基本的にはデータ分析者個人個人の自律的な活動が自動的に記録され、自己組織的に組織全体のナレッジとて蓄積され共有・再利用可能な状態が作られます。これは、データ分析者個人個人が特に意識しなくても自動的に実現できます。それに加えて、さらに意識的にこのプラットフォームを利用することで、蓄積されるナレッジに深みが増します。 例えば、あるビジネス課題をデータ分析で解決使用する場合のスタートは、「問い」です。上述のアナリティクス・ライフサイクルの一番左のスタートにあるものです。その際には、仮説設定をするためや仮説を検証する目的で、様々な角度から「データ探索」を行います。この初期のデータ探索プロセスは、その後のデータ加工やモデリングの根拠になっているため、ナレッジとしてまた説明責任の材料としてはとても重要になります。必ずしも最終的に使用したデータと同じデータを使うとも限らないので、自動的には他のデータ分析資産とは関連づきません。そのような探索プロセスも下記の図のように、同じプロジェクトフォルダに保存しておくことで、関連オブジェクトとして活用することが可能となります。また、プロアクティブに自信が使用したデータやレポートにコメントや評価を付与することで、より価値の高いナレッジへと育つことになります。 昨今企業内SNSなどで、オフィスツールの使い方などノウハウを共有をされている企業・組織もあるかと思います。それを全社規模のアナリティクス・プラットフォームで行うことで、データ分析に関わるナレッジをユーザー同士で培っていくイメージです。 まとめ 「このデータはこの目的に使えますか?」「あ、それはこの情報がないので使えないんですよ。こちらのデータを私は使ってますよ」データ分析者の間でよく交わされる会話です。この問いにいかに迅速に答えられるかが、データ分析の効率性と正確性を高めます。「情報資産カタログ」はまさにこの問いに答えるための機能なのです。

1 2 3 7