筑波大学学生によるAnalytics Experience 便り(2日目)

0

現地時間 2017/9/18,19,20 にてSASの秋のグローバルイベントである、「Analytics Experience 2017 (以下AX2017)」がアメリカ合衆国ワシントンDCで開催中です。前回に引き続き、今回は、日本から参加している筑波大学理工学群社会工学類経営工学主専攻4年生の村井諒さん,小林大悟さん,白鳥友風さん3名による参加レポート2日目を掲載します。

e-Poster部門@AX2017 発表への道のりby 筑波大学学生

昨日に引き続き、アナリティクスの最先端を行く発表が次々に行われていく中、私たちは今回の参加目的である二日目正午のStudent e-Poster部門の発表に臨みました。

イベントセッション情報:「Optimization of discounts at a retail store based on POS data keeping customer purchasing experience」

Student e-Posterは、学生がSASの製品を用いてアナリティクスの価値および可能性を提供する場です。学生たちは自身が作成したポスターを基に参加者にプレゼンテーションを行います。このセッションでは一方的な発表ではなく、ポスターを見に来たデータサイエンスに携わる教育関係者や企業関係者の方々と対話形式で発表の内容に関する意見を交換します。

今回のポスター発表は筑波大学理工学群社会工学類経営工学主専攻の目玉授業であるマネジメント実習で行った発表の内容を基に行ったものです。マネジメント実習では、学生がデータサイエンティストとして実データの分析から経営改善案の作成までを行う講義であり、ビジネスにおけるデータサイエンスの重要性を学ぶことができます。講義は10週にわたって行われ、プロのデータサイエンティストの方々からアドバイスを受けながら、アナリティクスを通じて改善案を練っていきます。これらの一連の取り組みは、同大学主催のビジネスデータ分析コンテストと平行して行われ、最終発表ではデータの提供企業の経営層の方を前に発表をし、その場で表彰が行われ、かつフィードバックを受けるという内容です。

私たちはSAS Enterprise Guideを用いて、小売店のPOSデータから価格と販売数量の関係を分析し、販売数に寄与しない値引きを明らかにすることで、コストを削減して経営改善を図る手法を提案しました。

今回のStudent e-Posterでは、先に上げたSAS Enterprise Guideや、より高度な分析を行うことができるSAS Enterprise Minerを使用してアナリティクスを行った他大学の学生によるポスターが多数展示され、データサイエンスに携わる方々に自分たちのポスターの内容を説明しました。聴講者の中には、ビジネスの第一線で活躍されている方も見受けられました。

このような環境でのポスター発表を通して、大学の実習講義では得ることの出来なかった、ビジネスに携わるデータサイエンティストとして重要な『最大限に利益を追求する姿勢』を学び取ることが出来ました。

発表中に企業の方から受けた質問の中には、「この手法をいかにして自分たちのビジネスに活かせるか」、「なぜ価値のない値引きだけに着目したのか」、「もっと利益を生み出すためにはまだできることがあると思うが、なぜそれをしなかったのか」といったものがありました。

これらの質問は、実習内では気づけなかった、利益を最大限に追求するビジネスの姿勢に基づいたものです。

事実私たちが提案した、無駄な値引きを明らかにすることによりコストを削減する手法は、経営改善を果たす上での一つの手段でしかありません。

私たちは無駄なコストの削減にのみ注目した価格最適化を行いましたが、価格の最適化は、無駄なコストの削減だけでなく、販売点数の増加や、時間とともに変化する顧客の性質なども踏まえて行うことができるはずです。

私たちは経営改善可能性として「無駄な値引きを減らす」という一つの案にたどり着いた結果、いかに無駄な値引きを無くすかということに固執していました。これは目標が、「経営改善」から「経営改善のための分析」にいつの間にか変わってしまい、分析すること自体に集中しすぎてしまったからです。特に私たちのようにビジネスの経験が少ない日本の学生はこのような方向に進んでしまう傾向があると思います。実際のビジネスにおいては、何が必要なのか、何ができるのかを常に意識し、そのうえでアナリティクスを活用することが重要だと考えられます。このことからビジネスにおいて、取りうる選択肢を柔軟に取捨選択し、最大の利益を求める姿勢を保ち続けることの大切さを実感しました。

このことを私たち学生が日本のデータサイエンス教育から学び取ることができれば、ビジネスに携わるデータサイエンティスト育成がさらに有意義なものになっていくだろうと感じました。

イベントも残り1日となりました。明日も様々なセッションを通し、学び取れることはすべて学び取るという心持で最終日に臨みたいです。

Share

About Author

小林 泉

Senior Manager, Analytics Platform and Cloud Solution, Customer Advisory Division

1999年SAS Institute Japan入社後、金融・通信・製造・小売・官公庁を中心に顧客分析やサプライチェーン最適化などのアナリティクス・プロジェクトにて、データウェアハウスやアナリティクス・プラットフォームの設計/構築からアナリティクスのコンサルティングを担当。その後、プリセールスとしてSASアナリティクス・ソリューションの提案、顧客のデータ・マネージメント課題解決への従事、最新技術を利用したビッグデータ活用やSAS on Hadoopビジネスの立ち上げ、普及活動に従事。 データのリアルタイム分析と、大規模分析基盤アーキテクチャ、機械学習についての豊富な知見、経験を持つ。 2016よりSAS Viyaの立ち上げを担当し、OSSの世界へ新しい価値を提供するビジネスを推進。2020年からSAS Cloudソリューションの推進を担当。最近の興味は、「現実世界のデジタライゼーションの限界と展望」。

Leave A Reply

Back to Top