A huge proportion of big data is unstructured text (such as client interactions, product reviews, call center logs, emails, blogs and tweets). Organizations starting to invest in advanced analytics often overlook the value text analytics could add to the process. But when data scientists or analysts get to work exploring
Tag: unstructured data
Analyzing text is like a treasure hunt. It is hard to tell what you will end up with before you start digging and the things you find out can be quite unique, invaluable and in many cases full of surprises. It requires a good blend of instruments like business knowledge,
The benefits of big data often depend on taming unstructured data. However, in international contexts, customer comments, employee notes, external websites, and the social media labyrinth are not exclusively written in English, or any single language for that matter. The Tower of Babel lives and it is in your unstructured
You have to be "in it to win it" as they say. This is becoming the case for many organisations that need to start using data to make better, evidence-based business decisions. Today, using analytics is not so much a data lottery as a data necessity. Some businesses may not
~ This article is co-authored by Biljana Belamaric Wilsey and Teresa Jade, both of whom are linguists in SAS' Text Analytics R&D. When I learned to program in Python, I was reminded that you have to tell the computer everything explicitly; it does not understand the human world of nuance
You might have lots of data on lots of customers, but imagine if you could suddenly add in a huge dollop of new, highly informative data that you weren’t able to access before. You could then use analytics to extract some really important insights about these customers, allowing you to
We’ve all been there. You’ve knuckled down, cleaned out the garage, the attic, and that cupboard under the stairs, thrown away a ton of stuff, only to need it again the very next week. Until recently, that’s exactly what many businesses did with their data. The data explosion has radically
The bigness of your data is likely not its most important characteristic. In fact, it probably doesn’t even rank among the Top 3 most important data issues you have to deal with. Data quality, the integration of data silos, and handling and extracting value from unstructured data are still the most