Unless you’ve been living under a rock, you've surely noticed the increasing numbers of headlines about big data, Hadoop, internet of things (IoT) and, of course, data streaming. For many companies, this next generation of data management is clearly marked "to play with later." That's because adopting the next wave
Tag: big data
.@philsimon looks at the challenges and opportunities that big data pose for data governance.
In the first blog of this four-part series, we discussed traditional data management and how we can apply these principles to our big data platforms. We also discussed how metadata can help bridge the gap of understanding the data as we move to newer technologies. Part 2 will focus on
Traditional data management includes all the disciplines required to manage data resources. More specifically, data management usually includes: Architectures that encompass data, process and infrastructure. Policies and governance surrounding data privacy, data quality and data usage. Procedures that manage a data life cycle from creation of the data to sunset
Our world is now so awash in data that many organizations have an embarrassment of riches when it comes to available data to support operational, tactical and strategic activities of the enterprise. Such a data-rich environment is highly susceptible to poor-quality data. This is especially true when swimming in data lakes –
Most enterprises employ multiple analytical models in their business intelligence applications and decision-making processes. These analytical models include descriptive analytics that help the organization understand what has happened and what is happening now, predictive analytics that determine the probability of what will happen next, and prescriptive analytics that focus on
Just in time for the Strata + Hadoop World Conference, SAS became the first software vendor to achieve ODPi Interoperability with our Base SAS® and SAS/ACCESS® Interface to Hadoop products. Now, that's a lot to digest – so let me back up a second and give some background as to what this
Lately I've been binge-watching a lot of police procedural television shows. The standard format for almost every episode is the same. It starts with the commission or discovery of a crime, followed by forensic investigation of the crime scene, analysis of the collected evidence, and interviews or interrogations with potential suspects. It ends
What does it really mean when we talk about the concept of a data asset? For the purposes of this discussion, let's say that a data asset is a manifestation of information that can be monetized. In my last post we explored how bringing many data artifacts together in a
A long time ago, I worked for a company that had positioned itself as basically a third-party “data trust” to perform collaborative analytics. The business proposition was to engage different types of organizations whose customer bases overlapped, ingest their data sets, and perform a number of analyses using the accumulated