Author

Susan Kahler
RSS
Global Product Marketing Manager for AI

Susan is a Global Product Marketing Manager for AI at SAS. She has her Ph.D. in Human Factors and Ergonomics, having used analytics to quantify and compare mental models of how humans learn complex operations. Throughout her well-rounded career, she has held roles in user centered design, product management, customer insights, consulting and operational risk. Susan recently completed her Master of Science in Analytics, focusing on healthcare analytics. She also holds a patent for a software navigation system to guide users through dynamically changing systems.

Advanced Analytics
Susan Kahler 0
Video: Image embedding using deep learning with Python (DLPy) and SAS Viya

An embedding model is a way to reduce the dimensionality of input data, such as images. Consider this to be a type of data preparation applied to image analysis. When an embedding model is used, input images are converted into low-dimensional vectors that can be more easily used by other computer vision tasks. The key to good embedding is to train the model so that similar images are converted to similar vectors.

Advanced Analytics | Machine Learning
Susan Kahler 0
Four machine learning strategies for solving real-world problems

There are four widely recognized styles of machine learning: supervised, unsupervised, semi-supervised and reinforcement learning. These styles have been discussed in great depth in the literature and are included in most introductory lectures on machine learning algorithms. As a recap, the table below summarizes these styles. For a comprehensive mapping

Advanced Analytics
Susan Kahler 0
How to build deep learning models with SAS

SAS® supports the creation of deep neural network models. Examples of these models include convolutional neural networks, recurrent neural networks, feedforward neural networks and autoencoder neural networks. Let’s examine in more detail how SAS creates deep learning models using SAS® Visual Data Mining and Machine Learning. Deep learning models with