Author

RSS

SASに入社する前にはプログラマーとしてウェブサイトの開発業務を行っていた。2020年1月からSASに入り、現在は、「Curious」、「Passionate」、「Authentic」、「Accountable」というSASの4つの価値を楽しみながらプリセールスとしてSASアナリティクス・ソリューションの設計、提案の活動を担当。出身は韓国。

Analytics | Data for Good | Learn SAS | Programming Tips
0
CData JDBC Driverを利用したSNS・ファイルストレージサービスとの連携のご紹介

SAS ViyaではCData JDBC Driverを使って下記のソーシャルメディア・ファイルストレージサービスにシームレスにかつ、素早く連結できます。 ・Facebook ・Google Analytics ・Google Drive ・Microsoft OneDrive ・Odata ・Twitter ・YouTube Analytics 本日はCData JDBCドライバーを使ってTwitterと連携し、「天気」に関するツイートを取得してみたいと思います。順番通り説明しますので、最後までお読みいただき、皆さんも是非ご活用ください。   1. Twitter API利用申請 Twitter Developer PlatformにてTwitter APIの利用申請を行います。申請にあたり、名前と住んでいる地域、利用目的などの情報を提供する必要がありますので、事前に用意しておいてください。また、利用申請の承認はTwitter側で数日かかる場合がありますのでご了承ください。 Twitter APIの利用申請が終わったら、申請完了のメールが届きます。 また、申請の検討が終わり、Twitter APIが利用できる状態になりましたら、「Account Application Approved」というメールが届きます。 2. CData Twitter JDBC Driverインストール インストールにはSASの契約とは別途、CData社との契約が必要ですが、30日間トライアルで使うことも可能ですので、ご紹介します。 まず、CData Twitter JDBC Driverインストールページにアクセスします。 次に、Downloadクリックします。 Download Trialをクリックします。 適切なOSを選択してDownloadをクリックします。今回はWindowsを選択しました。 ダウンロードされたTwitterJDBCDriver.exeファイルを開き、画面に表示されるステップに従ってインストールを完了します。   3. Connection String生成

Analytics | Data for Good | Work & Life at SAS
0
米国ノースカロライナ州から学ぶ行政におけるデジタルフォーメーション

◆ はじめに 行政のデジタルトランスフォーメーション(以下DX)は、デジタル化が進み、非対面でのコミュニケーションが日常化するなど、従来の生活形態が変化するにつれて、政府や行政も市民サービスの変革をする必要性が高まっています。その動きとして日本でもデジタル庁を新たに設置し、データ管理やITシステムなどを総括することになります。しかし行政のDXは、システムのデジタル化による行政手続きの効率化だけに焦点が当たり、大規模なシステムを構築しがちですが、本来行政のDXとは、データとそのデータを分析した結果得られた洞察によって、より良い市民サービスにつなげることから考えることが必要だと考えます。本稿では、SAS社の本社がある米国ノースカロライナ州(以下NC州)で行われている行政のDX事例について紹介します。NC州では、データ分析を活用して、様々な政策やサービスを新たに開発し、市民サービスに新たな価値を提供しています。この事例を通して、行政のDX成功のためのポイントについて見ていきたいと思います。   ◆ 行政におけるDXのポイント ポイント1.小さいことから始めよう 行政のDXで一足飛びに100%満足できる成果まで至る事例はあまりありません。また、すべてが理想的に準備されるまで待つ必要もありません。NC州は2007年からGDAC(Government Data Analytics Center)と呼ばれるデータの管理や分析を行う部署の運営を始めました。最初から大きなプロジェクトを行ったわけではなく、まずは各機関米国ノースカロライナ州から学ぶ行政におけるデジタルフォーメーションのデータを収集し、データ管理とモニタリングから始めました。初めの3年間は、データ基盤を構築し、大きなプロジェクトに最初に取り組んだのは2010年の犯罪分野です。GDACはSAS社と共同で「CJLEADS」というプロジェクトを開始しました。CJLEADS(Criminal Justice Law Enforcement Automated Data Services)は、犯罪データの統合管理のシステムです。CJLEADS導入前は、様々な機関のシステムやプロセスを経由して犯罪記録を閲覧したり、更新したりしましたが、現在では各機関がCJLEADSを介して犯罪歴を統合的に管理しています。これにより、NC州は、年間1,200万ドルを節約することができ、犯罪データの紛失や欠落を防ぎ、より安全な社会を作ることができました。その後、犯罪分野だけでなく、様々なプロジェクトに取り組み、行政のDXを進めています。これらのシステムやプロジェクトを最初から完全に構築することは簡単ではありません。NC州のCJLEADSも、最初はデータの収集、統合したデータを活用したレポーティングやモニタリング、そして複雑な課題解決、とステップを踏んでいます。このように、ビジョンは大きく掲げつつ、小さな成果を重ねて発展させることがポイントではないでしょうか。   ポイント2.現場にいるビジネス専門家の協力を得る 行政のDXの目的は、市民サービスの向上です。どうすればデジタル技術を活用したより良いサービスが生まれるのでしょうか。ここでは、例えば、一般的な自然災害である「洪水」を例として挙げてみましょう。世界的に洪水は年間数千万人の命を奪い、経済的な損失も大きくなります。それに対し、NC州は高度なデータ分析力とIT技術力を持つ企業との業務提携を通じて洪水問題を解決しています。 図1.SASとMicrosoftは様々な分野で顧客の課題を解決するために2020年6月に戦略パートナーシップを締結 NC州では、SAS社のデータ分析技術とMicrosoft社のIT技術を用いて洪水による災害を予測し、地域社会に知らせるシステムを構築しました。気象データ、橋の水位、降雨量など、様々な指標をはかり、IoTと機械学習を活用し、洪水による災害を予測・警告する仕組みを構築しました。この取り組みは、2020年11月には米国で毎年行われる政府革新賞(Government Innovation Award)で、公共部門の革新事業賞を受賞しました。NC州の洪水予防システムは企業との協力で公共データを活用し、市民の安全を確立することができたと評価されています。 図2.米国ノースカロライナ州とSASが共同で行ったDX事例 図2にはNC州とSAS社が協力して行った行政での様々な分野のDX事例の一部を記載しています。状況別、時期別、プロジェクト別など多様な課題が存在する行政のDXでは、当該課題を解決できる能力を備えた民間機関や民間企業などの経験と技術が貢献できるのではないでしょうか。   ポイント3.本来の目的に集中する 上記のポイントを成功させるためには、最終的にすべての参加者が「より良い市民サービスの提供」というDXの本来の目的を常に意識する必要があります。行政のデジタル化では、「オンライン行政サービス」、「電子政府の設置」などのシステム化対応に追われ、DXが本来生み出せるはずの「市民サービスの革新的な向上」という目的を見失いがちです。今回例に挙げたNC州ではDXの取り組みそのものを継続的に推進し、市民中心のサービスを提供するためにデジタルガバナンスを構築しました。そのガバナンスの透明性を高めるために毎年「We Are NC Gov」というカンファレンスを開催し、現在のDXの状況や今後の計画について議論しています。また、一般向けに州のDXの取り組みについて理解してもらえるよう、YouTubeへ説明動画をアップロードしています。外部からフィードバックをもらうことで、さらにより良い市民サービスの提供を目指しています。デジタル技術は、それ自体で意味のあるものではなく、その技術を活用して、市民サービスの革新を創出することではないでしょうか。 図3.NC州の情報技術部が2020年6月、YouTubeに公開した動画の一部を日本語に翻訳。GADCのデータ解析センター長が部門の事業について発表した。 ◆ おわりに 米国NC州とSAS社が共同で取り組んでいる行政のDX事例を通じて、行政におけるDXの成功のポイントについて考察してきました。ご紹介した3つのポイントが、革新的な市民サービスの向上へと向かうための一つの道標となるのではないでしょうか。日本におきましても、SASは戦略パートナーシップに基づいてMicrosoft社とスマートシティを推進して参りますので、詳細情報をご希望の方は是非ご相談ください。*お問い合わせ先: JPNSASInfo@sas.com  

Advanced Analytics | Analytics | Data Management | Learn SAS | Programming Tips | Students & Educators
0
SASのIn-Database機能のご紹介

1. はじめに 前回投稿しました「SAS/ACCESSのご紹介とSnowflakeとの連携デモ」はご覧になったでしょうか。SASと外部のデータストレージサービスを連携する「SAS/ACCESS」のご紹介と、実際に「Snowflake」というサービスに連携してみました。今回は、その続きとして、10年以上前からビッグデータ・アナリティクスの基本アーキテクチャである、In-Database機能の代表的な機能である、SQLパススルーという機能をご説明し、デモを準備しました。 2. SQLパススルーについて SAS/ACCESS がインストールされている場合、SQLパススルーを使用してデータストレージサービスにクエリできます。接続方法に応じてSQLパススルーは、「暗黙的パススルー」と「明示的パススルー」に分けることができます。 暗黙的パススルーの価値は、作成したSASコードが自動的にデータストレージサービスが処理できるSQLに変換され、そのSQLをデータストレージサービス側に与えることにあります。ですので、SASで実行されたSQLやSASプロシジャに指定されたWHERE句など、可能な限りデータストレージサービス側で処理を行い、結果だけをSAS側に転送することが可能です。一方、明示的パススルーの場合には、DB依存のSQLを明示的に記述することできます。暗黙的パススルーと明示的パススルーについてまとめた表を下に記載していますので、ご覧ください。今回は、暗黙的パススルーについて詳しくご紹介したいと思います。   ▲SAS CommunityでSQL Pass throughについて質問するユーザー 暗黙的パススルーを使用する方が良いか、明示的パススルーを使用するのが良いのか気になるかと思います。実はこのトピックは、SAS Communityでもよく見られ、SAS/ ACCESSを使用している全世界のユーザーにとっても気になる質問です。どちらを使用するかは、どこに基準を置くか、また、SASとデータストレージサービスの環境のスペックによって異なると思います。ですので、皆さんもこのような疑問が生じた場合は、SASに相談してみてはいかがでしょうか。   3. 暗黙的パススルーのデモ 3-1. データの紹介とデモの概要 今回のデモのために、「pets」と「owners」という名前で2つのテーブルをデータストレージサービス(今回は、Snowflake)側に事前に保存しておきました。 「pets」テーブルには、3つのカラムがあります。 Id: ペット固有のid Name: ペットの名前 Type: ペットの種類(犬、猫、その他) Id Name Type 1 オオビ 犬 2 ローザ 猫 3 ワンチャン その他 … … …   もう1つのテーブル「owners」にも3つのカラムがあります。 Id: オーナー固有のid Name: オーナーの名前

1 2