Tag: SAS Global Forum

Analytics | Artificial Intelligence | Data for Good
Jihye Yoo 0
[SGF시리즈#5] AI는 어떻게 아마존 열대 우림을 보호할까

IIASA(International Institute for Applied Systems Analysis, 국제응용시스템분석연구소)는 인류가 당면한 전 세계 환경과 경제, 기술, 사회적 변화로 인한 문제를 연구하는 독립적인 국제 과학 연구소입니다. 이곳에서는 특히, 글로벌 환경과 사회에 영향을 미치는 요소와 그 원인을 명확히 이해하기 위해 분석 기술을 적극 활용하고 있습니다. SAS는 교육, 환경, 건강, 인권, 빈곤 등 다양한 사회

Analytics | Fraud & Security Intelligence | Risk Management
Jihye Yoo 0
[SGF시리즈#4] 코로나19 시대 금융 기업의 빠른 회복 전략

전 세계 모든 기업이 코로나19에 과감히 맞서고 있습니다. 불안과 불확실성이 있지만 현행 지표가 믿을 만하다면 금융 서비스 산업은 지금의 어려움을 이겨내고 더 강력하고 현명하게 변화된 모습으로 복귀할 것입니다. 이번 SGF 시리즈에서는 회복기 거시경제 시나리오와 은행, 보험사의 회복을 지원하는 리스크 모델링, 사기 방지 등 분석 전략을 소개합니다. 회복기 거시 경제 시나리오

Analytics | Data Visualization
Jihye Yoo 0
[SGF시리즈#3] 글로벌위기 세계경제를 바라보는 임원들의 전망

회복이란 무엇일까요? 정상 상태로 돌아가는 것, 잃어버린 것을 되찾는 것, 통제와 안전을 되찾는 것... 평상시로 돌아가는 것은 지금은 힘든 일처럼 느껴지지만 조직의 회복 정도는 지금과 같은 혼란기에 리더가 취하는 조치에 달려 있습니다. 이번 SGF 시리즈에서는 팬데믹 시기의 혼란기를 리더는 어떻게 대응해야 하는지 살펴보고자 이코노미스트와 함께 조사한 ‘글로벌 비즈니스 바로미터(이하, GBB)’

Analytics | Data Visualization | Machine Learning
Jihye Yoo 0
[SGF시리즈#2] 인구이동분석, 접촉자 추적.. 팬데믹 극복을 위한 분석 기술

질병 확산을 억제하고 경제적 영향을 최소화하기 위해서는 인구가 어떻게 이동하는지 분석하고, 지역 내 접촉자를 추적하여 적절한 의사결정을 해야 합니다. 이번 SGF 시리즈에서는 인구 이동 분석과 접촉자 추적 등 SAS 분석 기술이 어떻게 팬데믹 극복을 위한 의사결정을 지원하는지에 대한 SAS 짐굿나잇 회장과 스티브 베넷 글로벌 정부기관 프랙티스 부문 이사의 세션을 소개합니다.

Analytics
Jihye Yoo 0
[SGF시리즈#1] 팬데믹을 극복하기 위한 분석의 역할

지난 몇 달, 코로나19로 인한 팬데믹으로 전 세계는 다양한 변화를 경험하고 있습니다. 경제와 헬스케어 시스템은 물론, 우리의 일상과 일하는 방식까지 바꿔놓았습니다. 세계 최대 분석 컨퍼런스인 ‘SAS 글로벌 포럼 2020’을 SAS 글로벌 포럼 역사상 최초로 온라인으로 개최하게 된 것도 그 같은 변화 중 하나일 것입니다. SAS 글로벌 포럼은 전 세계 경영진과 산업별

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning | SAS Events
Jihye Yoo 0
신속한 의사결정을 지원하는 '클라우드 네이티브' 애널리틱스

오늘 6월 17일(미 동부 시간 기준 16일) 온라인으로 개최한 ‘SAS 글로벌 포럼 2020’에서 SAS는 최신 클라우드 기술을 접목해 의사결정 과정을 가속화하는 AI 기반 엔터프라이즈 분석 플랫폼의 최신 버전 ‘SAS 바이야 4(SAS® Viya® 4)’를 공개하고 마이크로소프트와 클라우드 전환 가속화를 위한 전략적 파트너십 체결을 발표했습니다. 클라우드로 전환하는 비즈니스 IT 트렌드에 발 맞추어

Customer Intelligence | SAS Events
Shadi Shahin 0
SAS User Feedback Award winner helps drive innovation, shape SAS® 360 Engage software

SAS users help drive innovation, providing feedback on SAS products through various mediums, including customer advisory boards, communities, SASware ballot ideas and SAS Global Forum. The SAS User Feedback Award is presented annually to a user whose recommendations and insights lead to significant improvements to SAS software. This year SAS

Analytics | SAS Events
처음 만나는 온라인 SAS 글로벌 포럼 2020을 소개합니다

코로나19가 전 세계적으로 확산되고 장기화되면서 우리는 요즘 삶의 방식이 새롭게 변화하는 모습을 실시간으로 지켜보고 있습니다. 학교에 가서 듣던 수업, 회사에 출근하여 처리하던 업무 등 늘 당연하게 여기던 일상이 대부분 언택트(Untact), 디지털 방식으로 전환되고 있지요. 처음이라 낯설고 아직 불안정한 부분들도 많지만, 지금의 위기 상황을 극복하고 모두가 하루 빨리 건강한 일상을 되찾으려면

Analytics | SAS Events
SAS Global Forum 2019 論文紹介シリーズ 第4回「オペレーショナル・アナリティクス for IT」

前回は、ビジネス価値創出につながる「オペレーショナル・アナリティクス for Data Scientist」ユースケースの論文を紹介しました。今回は、企業様にとって、クラウド上のインフラアーキテクチャと分析プラットフォームのデプロイメントについて、ご紹介します。昨今、なぜ「コンテナ」が注目されているのか、そして、クラウドやコンテナ上に分析プラットフォームを移行/構築し、活用することに関心があるのであれば、ぜひ最後までご覧ください。 1.Cows or Chickens: How You Can Make Your Models into Containers モデルは特定の作業(新しいデータをスコアリングして予測を出すこと)として役割を果たしてきています。一方、コンテナは簡単に作成し、廃棄し、再利用できることができます。実際、それらは簡単にインテグレートさせ、パブリッククラウドとオンプレミス環境で実行できます。SASユーザは本論文を通じて、簡単にモデルの機能をコンテナに入れることができます。例えば、パブリッククラウドとオンプレミス環境でのDockerコンテナ。また、SASのModel Managerは様々なソース(オープンソース、SAS、コンテナ等々)からモデルの管理を行うことができます。したがって、この論文はそれらの基本知識と、どのようにSASの分析モデルをコンテナに入れることをメインに紹介します。 2.Orchestration of SAS® Data Integration Processes on AWS この論文では、Amazon Web Services(AWS)S3でのSASデータインテグレーションプロセスの構成について説明します。例としては、現在サポートしているお客様がクレジット報告書を生成するプロセスを毎日実行しています。そして、そのお客様の対象顧客は1カ月ごとに1回その報告を受け取ります。データ量としては、毎日に約20万の顧客情報が処理され、最終的に毎月約600万人の顧客へ報告することとなります。プロセスはオンプレミスデータセンターで始まり、続いてAWSのSASデータインテグレーションでAPR計算が行われ、最後にオンプレミスデータセンターで報告書が生成されます。さらに詳しい情報としては、彼らのアーキテクチャ全体はマイクロサービスを使われていますが、同時にAWS Lambda、簡易通知サービス(SNS)、Amazon Simple Storage Service(Amazon S3)、およびAmazon Elastic Compute Cloud(EC2)などの独立した高度に分離されたコンポーネントも使われています。つまり、それらにより、データパイプラインに対するトラブルシューティングが簡単になっていますが、オーケストレーションにLambda関数を使用することを選択すると、プロセスがある程度複雑になります。ただし、エンタープライズアーキテクチャにとって最も安定性、セキュリティ、柔軟性、および信頼性もあります。S3FやCloudWatch SSMのようなより単純な代替手段がありますが、それらはエンタープライズアーキテクチャにはあまり適していません。 3.SAS® on Kubernetes: Container Orchestration of Analytic Work Loads 現在、Big Dataの時代で、Advanced analyticsのためのインフラストラクチャに対するニーズが高まっています。また、分析自体に対して、最適化、予測が最も重要領域であり、小売業、金融業などの業界ではそれぞれ、分析に対する独自の課題を抱えています。この論文では、Google Cloud

Advanced Analytics | Analytics | SAS Events
SAS Global Forum 2019 論文紹介シリーズ 第3回「オペレーショナル・アナリティクス for Data Scientist」

今回は「オペレーショナル・アナリティクス for Data Scientist」をメインテーマとしてご紹介します。企業で分析業務を行うデータサイエンティストの皆様はご存知の通り、モデルは開発しただけでは意味がありません。そのモデルを業務に実装(デプロイ)してはじめて、ビジネス課題を解決し、価値を創出することができるわけです。SASが長年蓄積してきたナレッジをご覧ください。 1.Using SAS® Viya® to Implement Custom SAS® Analytics in Python: A Cybersecurity Example この論文は、SASの分析機能により支えられているプロダクションレベルのアナリティクスソリューションを開発しようとしているデータサイエンティストを対象としています。本文では、SAS ViyaとCloud Analytics Service(CAS)に基づく、CASの構築基盤とサイバーセキュリティを説明します。そして、SASアナリティクスを本番環境でPythonで実装する方法を説明します。 2.What’s New in FCMP for SAS 9.4 and SAS Viya この論文では、下記いくつかポイントをメインとして議論していきます。まず、SASが提供しているFunctionコンパイラー(FCMP)の新しい特徴を紹介し、それから主にFCMPアクションセットを中心とし、リアルタイムアナリティクススコアリングコンテナ(ASTORE)とPythonのインテグレーションについても説明します。それらの説明により、SASの新しいテクノロジーに対し、更なる理解を頂けることを期待しています。 3.Influencer Marketing Analytics using SAS® Viya® この論文はSAS Viyaを使って、マーケティングアナリティクスを行う事例を紹介します。近来、マーケティングはますますインフルエンサーが大きな役割をしめるようになってきています。それらのインフルエンサーたちはソーシャルメディアのコンテンツ作成者であり、多くのフォロワーを持ち、人々の意見に影響を与え、購入を検討する人々にも影響を与えています。インフルエンサーマーケティングは、より伝統的なマーケティングチャンネルと同じようにコストがかかるため、企業にとって最も効果的なインフルエンサーを選択することは非常に重要です。 こういった背景において、この論文では、ソーシャルメディアで本当に影響力をもつ人、そしてその影響程度はなにかについて分析することを目指しています。ケーススタディは、感情面の影響を与えることに焦点を当てています。また、多くのフォロワーを持つインフルエンサーとその色んな投稿とアクティビティを分析します。実施するには、Pythonのライブラリとコードが使用されます。次に、彼らのアクティビティとネットワークを分析して、それらの影響範囲を分析します。これらの分析には、SAS Viyaのテキストおよびネットワーク分析機能が使用されます。データ収集ステップ(Python)はクライアントとしてJupyter Notebookを使用していますが、分析ステップは主にSAS Visual Text Analytics(Model Studio)とSAS Visual Analyticsを使用して行われています。 4.Take

Advanced Analytics | Machine Learning | SAS Events
SAS Global Forum 2019 論文紹介シリーズ 第2回「PythonからSAS9を活用するコーディング事例紹介」

前回に引き続き、SAS Global Forum 2019で公開された論文をご紹介します。今回は、SASユーザを含め、SAS言語とオープンソース言語の機能を共に活用することで、様々なビジネス課題に対応できるようなコーディング事例をいくつかピックアップします。 1.Deep Learning with SAS® and Python: A Comparative Study ご存知の通り、SASはディープランニングに関する専門性の高いかつ豊富な機能と製品を提供しています。この論文では、SASとPythonに対し、それぞれ違うデータタイプ(例えば:構造化と非構造化、イメージ、テキスト、シーケンシャルデータ等々)を使ったディープラーニングのモデリングを比較する論文となります。主にSAS環境でのディープランニングフレームワーク、そして、SASとPython言語のディープランニングプログラミングの違いによって、それぞれのメリットとデメリットの紹介となります。 2.Utilization of Python in clinical study by SASPy Pythonは近年最も使われているプログラミング言語になってきました。そして現在、機械学習とAI領域でもよく使われています。Pythonの一番のアドバンテージはその豊かなライブラリを通じ、多種多様な分析をインプリメントできることです。SASは臨床研究領域で最も強力な分析製品でありながら、さらにPythonを使うことによって、そのレポーティング機能、例えば、データ管理、データ可視化を拡張できます。これもSASプログラマーユーザのキャリアに対し、潜在的なメリットです。その様な背景において、SASPyはその可能性を実現します。SASPyはPythonコードの中でSASのセッションをスタートできるPythonパッケージライブラリとなります。この論文では、基本的なSASPyの使用方法とSASのデータセットを処理するヒントについて紹介しています。そして、Pythonを使って、臨床研究で使えそうなレポーティング機能について検討します。 3.Everything is better with friends: Executing SAS® code in Python scripts with SASPy SASPyはSASがPythonプログラミング用に開発したモジュールで、SASシステムに代わるインタフェースを提供しています。SASPyを通じて、SASプロシージャはPythonスクリプトと構文で実行することができ、かつ、SASデータセットとそれに相当するPythonデータフレームの間にデータを転送することも可能です。それにより、SASプログラマーはPythonの柔軟性を利用してフロー制御を行うことができ、PythonプログラマーはSAS分析をスクリプトに組み込むこともできます。この論文では、Pythonスクリプト内で通常のSASコードとSASPyの両方を使用した一般的なデータ分析タスクの例を幾つか紹介し、それぞれの重要なトレードオフを強調し、多種プログラミング言語ユーザになれることの価値を強調しています。SAS University Edition用のJupyterLabインタフェースを使用し、それらの例を再現するための説明も含まれています。それらのSASとPythonのインテグレーション例はJupyter Notebookとしてダウンロードできます。 ダウンロード:https://github.com/saspy-bffs/sgf-2019-how 4.Modeling with Deep Recurrent Architectures: A Case Study of

Analytics
SAS Global Forum 2019 論文紹介シリーズ 第1回「OSS言語から活用できるオープンなSASプラットフォーム」

例年と同様に、SAS Instituteはグローバル各国でフォーラムを開催しました。日本ではSAS Forum Japanと題して6月11日に東京の六本木で開催され、また、アメリカSAS本社はダラスでSAS Global Forum 2019を開催(4/28~5/1)し、その中では多数の論文が発表されています。本シリーズでは、これらの論文の中から、OSSとSASプラットフォーム製品のユースケース、OSSコーディング開発・運用事例、クラウドアーキテクチャの設計と運用等々の注目された内容を選別した上で、4回に分けて紹介していきます。 第1回「OSS言語から活用できるオープンなSASプラットフォーム」 近年、OSS(オープンソースソフトウェア)プログラミング言語が数多くのデータサイエンティストや企業によって利用され、分析モデルが開発されています。PythonやR、Luaなどデータサイエンティストや開発者たちに好かれたプログラミング言語はアナリティクス業界に革新をもたらしました。SASはそれらのOSSユーザと企業の要望に応じ、従来のSASユーザとOSSプログラミングユーザーたちが共同作業、かつ連携できるようなプラットフォームを提供しています。 今回は、OSSユーザがどのような方法を利用し、SASプラットフォーム上で自由自在なデータ分析を行えるのかをテーマとし、SAS Global Forumで公開した論文をご紹介します。 1.Open Visualization with SAS® Viya® and Python この論文では、オープンソース言語の一つであるPythonに関し、SAS ViyaのSWAT(Scripting Wrapper for Analytics Transfer)を通じて、メインにオープンソースのグラフィックテクノロジー、特にPythonのMatplotライブラリ、そして現在主流となっているD3の可視化フレームワークとのインテグレーション技術について紹介しています。本文で用いた例は、統計プログラミングのサンプルを使って、Jupyter NotebookからSAS Viyaの機能を呼び出し、最終的に、mpld3で作られた静的なグラフを動的グラフに変更した例となります。 2.SWAT’s it all about? SAS Viya® for Python Users SASは2016の7月にPythonライブラリSWATをリリースしました。それにより、PythonユーザはSASのCASに接続して、SAS Viyaの各種機能を使えるようになりました。SWATを利用することで、SAS言語バックグラウンドを持っていないユーザには、SAS言語ユーザと同じくCASとSAS Viyaの各種機能を使用できるようになります。この論文では、Python SWATを通じて、CASセッションへ接続し、PythonからCASへデータをロードし、さらにCASアクションで実行して分析する一連作業をデモンストレーションの形で紹介します。使用するデータは、SASほかのアプリケーション、例えばVisual Analyticsなどでも利用できる様子を紹介します。 3.Deploying Models Using SAS® and Open Source 近来、機械学習と人工知能の議論はほとんどの時間がモデル開発の議論に費やされています。しかし、モデルによって得られる洞察をどのように効率的にビジネス価値創出に適用するかに関してはほとんど議論されていません。この論文では、モデルの構築に応じ、Docker、Flask、Jenkins、Jupyter、Pythonなどのオープンソースプロジェクトとの組み合わせで、SASを使用してモデルを展開するためのDevOpsプリンシパルの使用例を紹介します。例に使われている関連アプリケーションはグローバルなユーザベースを持つ資産上のレコメンド・エンジンとなります。この使用例は、セキュリティ、待ち時間、スケーラビリティ、再現性に直面する必要があることをめぐってディスカッションします。最後に、その解決策となるソリューションとその課題となる部分を含めて説明します。 4.SAS®

1 2 3 4 19