기업내에 AI/ML를 적용하기 위해, 업무 관점에서 시민 데이터 사이언티스트(Citizen Data Scientist, 이하 CDS)와 그 필요 역량인 데이터 문해력(Data Literacy)의 중요성이 높아지고 있습니다.(참고 : 데이터 문해력과 시민 데이터 사이언티스트의 필요 역량) 이와 연결하여, 데이터를 기반으로 신속하게 개발한 예측 모델을 업무 시스템에 통합 또는 활용하기 위해 IT 관점에서 해결해야할 과제와 접근 방안에 대해
기업내에 AI/ML를 적용하기 위해, 업무 관점에서 시민 데이터 사이언티스트(Citizen Data Scientist, 이하 CDS)와 그 필요 역량인 데이터 문해력(Data Literacy)의 중요성이 높아지고 있습니다.(참고 : 데이터 문해력과 시민 데이터 사이언티스트의 필요 역량) 이와 연결하여, 데이터를 기반으로 신속하게 개발한 예측 모델을 업무 시스템에 통합 또는 활용하기 위해 IT 관점에서 해결해야할 과제와 접근 방안에 대해
Between DevOps, DataOps, MLOps and ModelOps, there are different "Ops" based on different environments. "Ops" generally is the shortened version of Operations. Check out some of the different ones in our current technological world. How many do you know? Learning about DevOps DevOps or Developer Operations refers to applying agile
DataOps increases the productivity of AI practitioners by automating data analytics pipelines and speeding up the process of moving from ideas to innovations. DataOps best practices make raw data polished and useful for building AI models. Models need to work on the data that is introduced, as well as on