Tag: AI

Advanced Analytics | Machine Learning
SAS Korea 0
데이터 과학자가 뽑은 "머신러닝 알고리즘 개발 베스트 프랙티스 2탄"

현존 최고의 데이터 과학자들이 뽑은 머신러닝 알고리즘 개발 베스트 프랙티스! 그 두 번째 시간입니다. 시리즈를 처음 접하시는 경우 블로그 1탄을 참고해주세요. 기본기 다지기 희귀한 이벤트 탐지하기 수많은 모델 결합하기 모델 적용하기 국소 최적해에 빠지는 것을 방지하기 위해 모델 오토튜닝하기 시간 효과(temporal effect) 관리하기 '일반화' 이해하기 Chapter 5. 국소 최적해에 빠지는 것을 방지하기

Advanced Analytics | Programming Tips
Makoto Unemi (畝見 真) 0
SAS Viyaで線形回帰

SAS Viyaで線形回帰を行う方法を紹介します。 言語はPythonを使います。 SAS Viyaで線形回帰を行う方法には大きく以下の手法が用意されています。 多項回帰: simpleアクションセットで提供。 一般化線形回帰または一般線形回帰: regressionアクションセットで提供。 機械学習で回帰: 各種機械学習用のアクションセットで提供。 今回は単純なサインカーブを利用して、上記3種類の回帰モデルを作ってみます。   【サインカーブ】 -4≦x<4の範囲でサインカーブを作ります。 普通に $$y = sin(x) $$を算出しても面白みがないので、乱数を加減して以下のようなデータを作りました。これをトレーニングデータとします。 青い点線が $$y=sin(x)$$ の曲線、グレーの円は $$y=sin(x)$$ に乱数を加減したプロットです。 グレーのプロットの中心を青い点線が通っていることがわかります。 今回はグレーのプロットをトレーニングデータとして線形回帰を行います。グレーのプロットはだいぶ散らばって見えますが、回帰モデルとしては青い点線のように中心を通った曲線が描けるはずです。 トレーニングデータのデータセット名は "sinx" とします。説明変数は "x"、ターゲット変数は "y" になります。 各手法で生成したモデルで回帰を行うため、-4≦x<4 の範囲で0.01刻みで"x" の値をとった "rangex" というデータセットも用意します。 まずはCASセッションを生成し、それぞれのデータをCASにアップロードします。 import swat host = "localhost" port = 5570 user = "cas" password = "p@ssw0rd"

1 58 59 60 61 62 72