Tag: セルフサービス

Data Visualization
セルフサービスBI&AIの決定版SAS Visual Analytics 8.3 on SAS Viya新機能概要

SAS Visual Analytics on SAS Viya(以降VA)の次期版8.3に搭載予定の新機能をダイジェストで紹介します。 レポート作成効率の向上 レポート表示能力の拡張 表形式オブジェクトの機能拡張 SAS Mobile SDK 1.レポート作成効率の向上 レポート作成や設定は1度だけ、後はこれを再利用し、レポート作成の効率を向上 1-1.レポートデータビュー 従来からVAではレポート作成・編集時、左側に表示される「データ」リスト画面内で、必要な階層項目や計算項目の作成、カスタムカテゴリーの作成、不要な項目の非表示、などを設定し、このデータビューに基づいてレポートを作成してきました。 VA8.3では、同じデータソースに基づく複数の異なるデータビューを定義し、これを異なるレポート間、ユーザー間で共有し、再利用することができるようになります。 同じデータソースに基づく、異なるレポートを作成する際の効率が大幅に向上します。 1-2.共通フィルター 従来は、オブジェクトごとに右画面内で設定できるフィルター(オブジェクトフィルター)を使用する場合、例えば、レポート内に3つのチャートオブジェクト(円グラフ、クロス表、棒グラフ)があり、円グラフと棒グラフにだけ同じ条件で絞り込みをかけたい場合は、円グラフと棒グラフの両オブジェクトにそれぞれ同じフィルターを設定する必要がありました。 VA8.3では、作成したフィルター定義を複数の異なるオブジェクトに再適用することが可能になります。さらに、このフィルター定義は共通フィルターとしてデータビューに保存し、「1-1.」項で紹介したように、レポート間、ユーザー間でも共有し、再利用が可能になります。 1-3.絞り込み条件保持 従来、レポート参照者がレポートを表示し、好みの条件を選択し、レポート表示内容を変更した場合、そのレポートを一旦閉じた後、再度同じ内容を参照したい場合は、再度同じ作業を繰り返す必要がありました。 しかし、VA8.3では、レポート参照時にレポートに対して行った最終操作結果状態を保持することが可能となり、レポート再表示時に、同じ作業を繰り返す必要が無くなります。 1-4.格子ガイド利用 VA8.3では、レポート作成・編集時に、背景にグリッドを表示し、レポートページ内のお好みの位置に、オブジェクトを正確かつ素早く配置することが可能になります。 2.レポート表示能力の拡張 レポートが、あなたに、ストーリーを語ります。 2-1.再生可能ダッシュボード 再生可能なダッシュボードを使用することで、レポート参照者は、静的ではなく動的なダッシュボードをフルスクリーンで体験することができます。 会議の場などで、PowerPointのスライドショーのように、BIレポートを効果的に表示することも可能です。 あなたが設定したタイミングで、設定した順序で、レポートページ単位やページ内オブジェクト単位で、ダッシュボード内容が自動再生されます。 2-2.レポート自動リフレッシュ機能拡張 従来のVAでは、レポート全体を最短1分間隔で自動リフレッシュすることが可能でしたが、VA8.3では、レポートのページ単位、ページ内のオブジェクト単位に、最短1秒間隔で自動リフレッシュが可能になります。 これによって、リアルタイムBIレポートモニタリングが実現されます。 例えば、ページ内の折れ線グラフは1秒間隔で、リアルタイムなデータの変動を表示し、棒グラフは2分間隔で、別のデータの更新状況を表示する、といったことが可能になります。 3.表形式オブジェクトの機能拡張 そのままでは、数値の羅列で、ビジネス状況を直感的に捉えるのは難しいリスト表やクロス集計表の表現力が拡張されます。 3-1.表のセル内にグラフ表示 表のセル内に、数値だけでなく、棒グラフやヒートマップなどを表示することができます。 このビジュアライゼーションによって、問題点を迅速に特定し、データの傾向を直感的に捉えることが可能になります。 3-2.数値の表示桁数短縮 表のセル内に表示する数値の桁数が多い場合に、ワンタッチで短縮形表示に変更することが可能になります。これによって、表示スペースを節約して、表を読み易くできます。 4.SAS Mobile SDK iOS用SAS SDKおよびAndroid用SAS SDKを使用して、SAS Viyaサーバ上のコンテンツにアクセスするための強力なモバイルアプリを作成することが可能です。

Data Management
小林 泉 0
Hadoopだからこそ必要なセルフサービス-そしてアダプティブ・データマネジメントの時代へ

2014 およそ2014年からSAS on Hadoopソリューションを本格展開してきました。時代背景的には、2014頃は依然として、業態の特性からデータが巨大になりがちで、かつそのデータを活用することそのものが競争優位の源泉となる事業を展開する企業にHadoopの活用が限られていたと思います。その頃は、すでにHadoopをお持ちのお客様に対して、SASのインメモリ・アナリティクス・エンジンをご提供するというケースが大半でした。 その後、急速にHadoopのコモディティ化が進んだと感じます。 2015 2015頃になると、前述の業態以外においてもビッグデータ・アナリティクスの成熟度が上がりました。データ取得技術の発展も伴い、これまで活用していなかった種類や量のデータを競争優位性のために活用を志向するようになり、蓄積および処理手段としてのHadoopの選択が加速します。この頃になると、数年前には必ずあったHadoopそのものの検証ステップを踏まない企業が増えてきます。データ量、処理規模、拡張性、コスト効率を考えたときに妥当なテクノロジーがHadoopという結論になります。ビッグデータはデータのサイズだけの話ではありませんが、筆者の足で稼いだ統計によると、当時大体10TBくらいが、従来のテクノロジーのまま行くか、Hadoopを採用するかの分岐点として企業・組織は算段していたようです。この時期になると、従来のテクノロジーの代替手段としてのHadoopの適用パターンが見えてきました。 新しいデータのための環境 従来捨てていた、あるいは新たに取得可能になった新しいデータをとりあえず蓄積して、何か新しいことを始めるためのある程度独立した環境として、コスト効率を考慮してHadoopを採用するパターン 既存のデータウェアハウスへ価値を付加(上の発展形であることが多い) 新たなデータを使用してHadoop上で加工し、アナリティクス・ベーステーブルにカラムを追加し、アナリティクスの精度を向上 ETL処理負荷やデータ格納場所のHadoopへのオフロード BI & アナリティクスの専用基盤 SQLベースのアプリケーションだけをRDBMSに残し、その他の機械学習、ビジュアライゼーションなどSQLが不向きな処理をすべてHadoop上で実施 多くは、インメモリアナリティクスエンジンと併用 データレイク (筆者の意見としては)いざ新しいデータを使用しようと思ったときのスピード重視で、直近使用しないデータも含めて、全てのデータを蓄積しておく。よくあるのが、新しいデータを使用しようと思ったときには、まだデータが蓄積されておらず、利用開始までタイムラグが生じてしまうケース。その時間的損失すなわち利益の喪失を重要視し、そのような方針にしている企業が実際に当時から存在します。 2016 海外の事例等では数年前から見られましたが、2016になると、日本でも以下の傾向が見られます 既存Hadoopをそのコンセプトどおりスケールアウトしていくケース グローバル・データ・プラットフォームとして、複数のHadoopクラスターを階層的に運用するケース AI、機械学習ブームにより機械学習のためのデータの蓄積環境として IoTの流れにより、ストリーミング処理(SASでいうと、SAS Event Streaming Processingという製品です)と組み合わせて まさに、Hadoopがデータプラットフォームとなる時代がやって来たと思います。その証拠に、SAS on Hadoopソリューションは、日本においても、金融、小売、通信、サービス、製造、製薬といったほぼ全ての業種において活用されています。 Hadoopの目的は、従来型のBI・レポーティングではなく、アナリティクス このような流れの中で、Hadoopの採用には一つの確固たる特徴が浮かび上がっています。もちろん弊社が単にITシステムの導入をゴールとするのではなく、ビジネス価値創出を提供価値のゴールにしているというバイアスはあるのですが。。。 Hadoopの導入目的は、ビジネス価値を創出するアナリティクスのためであることがほとんどである したがって、Hadoopに格納されるデータには主にエンドユーザーがアナリティクス観点の目的志向でアクセスするケースがほとんどである つまり、ある程度の規模のITシステムではあっても、Hadoopに格納されるデータはアナリティクスの目的ドリブンでしかアクセスされません。主たるユーザーは、分析者やデータ・サイエンティストです。彼らが、「使いたい」と思った瞬間にアクセスできる必要があるのです。このようなユーザーサイドのリクエストは、従来のBIすなわちレポーティングのような固定化された要件定義をするような依頼ではないため、その都度従来のようにIT部門と要件をすり合わせて、IT部門にお願いするという方法では成り立ちません。その数日、数週間というリードタイムが意思決定を遅らせ、企業の業績に悪影響をもたらすからです。あるいはIT部門の担当者を疲弊させてしまいます。つまり、アナリティクスにおいては、分析者・データサイエンティストが自分自身で、Hadoop上のデータにアクセスし、必要な品質で、必要な形式で、必要なスピードで取得するために自由にデータ加工できる必要があるのです。 このあたりの話については、下記でも紹介していますので、是非ご覧ください。 【ITmedia連載】IT部門のためのアナリティクス入門 第2回 やっと分かった ビッグデータアナリティクスでHadoopを使う理由 第3回 データ分析で成功するためのデータマネジメントとIT部門の新たな役割  【関連ブログ】 アナリティクスの効果を最大化するデータマネジメント勘所 これが、Hadoopにおいて、セルフサービス・データマネージメント(データ準備)ツールが不可欠な理由です。SASはアナリティクスのソフトウェアベンダーとして、このHadoop上でITスキルの高くない分析者・データサイエンティストでも自分自身で自由にデータを取得できるツールを開発し提供しています。それが、SAS Data Loader for Hadoopです。 SAS Data Loader