STEAM教育の進化にみるAI活用に必要な芸術家的思考

0

遅ればせながら、最近STEMがSTEAMになっていることに気づきました。ここ数年でAI/アナリティクスブームの中、アナリティクスを活用し始めようとする企業が増え、どのような人材を配置すべきかという悩みをお聞きする機会が増えていますが、この、STEM⇒STEAMの進化についても、なるほどなと思うので簡単に整理してみます。

 

SAS本社敷地に象徴的にそびえる “Pi in the Sky II”, Micajah Bienvenu

私は数学、科学、自然の間の相互接続性に常に興味を持っていました。私は空間の曲線、特に円弧や螺旋を探索するのが好きです。私はアーチの形而上学的な側面にも惹かれます。野原の真ん中にアーチを設置すれば、人々はわざわざそこを通り抜けようとするでしょう。アーチの下を通過することは変革的であり、あるものから別のものへの象徴的な変化です。それに抵抗することはできません。 (彫刻家のミカジャ・ビアンヴェヌ氏)

以前からあるSTEM教育とは

STEMとは、多くの方がご存じの通り、Science, Technology, EngineeringそしてMathematicsの頭文字をとったもので、第四次産業革命のこの世の中をけん引する人材教育に必要な要素を並べています。アナリティクスの世界に長年身を置いてきた筆者の立場から、各要素に日本語訳を付与すると以下のようになります。教育の専門家からすると正確性に欠けるかもしれませんがご容赦ください。

  • Science-科学的な論証や根拠づけ推論をする科学的な思考(方法論)
  • Techonology-創造物の構成要素および構成要素を作り出すための道具(道具)
  • Engineering -創造物を作り出す実用的な実践(実践力)
  • Mathematics-創造物の特徴の論理的な表現方法(測り方)

新しい工学製品やITシステムを想像するためには、これらを総合的に学ぶことが重要だという考え方です。大学ではもともとそれぞれの専門領域を突き詰めて研究するという考えで、サイロ化された学部・学科・研究室が作られてきました。もちろんそういった方向での探求はそれはそれで必要です。一方で、何か新しいものを創造するという目的を志向した場合には、「総合力」が必要になるということです。20年以上前ですが、筆者が大学生のころに、「総合学部」が世の中に登場し始めたのもこういう背景なのだと思います。

最近進化したSTEAM教育とは

近年、STEM教育にAを足した方が良いという流れになってきています。AはArtだけではなく、Liberal Artsも含むと言われますが、Liberal Artsをここに入れてしまうと全体の構造が分かりづらくなってしまうので、ここでは、Artすなわち、芸術家的思考が追加されたとします。

なぜ追加されたのでしょうか?

芸術家的思考とはそもそも何でしょうか?もちろん私たちが良く知る芸術は、斬新な視点や考え方で何か新しい表現をされたものに芸術性を見出すことが多いと思いますが、本質的には芸術家は、「自己の探求」です。それを象徴性をもって表現しているのだと思います。

つまり筆者が考えるに、新しい創造物、つまり既存の知と知を掛け合わせたイノベーションは、当然ながらSTEM教育を受けたところで機械的にできるものではなく、創造者の思いと象徴性が大事だということではないでしょうか。

AI/アナリティクスを活用したビジネス成長には、芸術家的思考が大事

ビジネスの世界でAI/アナリティクスを活用し持続的な成長をするためには、AI/アナリティクスをどのような目的で活用するかによって、その成果は種類が異なります。

  • ストラテジック - 将来の成長のため、収益最大化のための方向付けをする。(全社規模の収益最大化)
  • タクティカル - ストラテジックな取り組みを実践する計画を立てる(事業部単位の計画)
  • オペレーショナル - タクティカルな計画の通りに機会損失なくビジネスを遂行する(計画通りの遂行)

より詳細は、こちらの筆者のブログ「そのデータ活用は攻め?守り?」を参照してください。

この3つのうち、単なる過去の実績の延長ではなく、非連続な将来の成長や収益最大化を担うのは、「ストラテジック」の領域です。不確実性の高まる世の中において、将来の予測的シミュレーションによって透明性の高いよりよい意思決定を行おうとしたり、あるいはイノベーションや、トランスフォーメーションによって過去の単純な延長としての予測ではなく、新たな市場・商品やサービス・ビジネスプロセスを生み出し、競争優位な未来を作り出す活動です。

この活動において大事なのは、他社の見よう見真似であったり、単に現在の市場ニーズだけに基づくのではなく、自社のコアコンピテンシーをとことん見つめ、自社独自の将来持続可能な戦略を打ち出すことです。これはまさに芸術家的思考にほかなりません。過去の経験を活かしつつも、過去や現在に構築された既存の枠組みにとらわれない視点・思考によって、自社あるいは社外にある既存の知と知との関係を見つめることで初めてあらたなイノベーションへとつながります。さらに、持続的という点に焦点を与えるとやはりここでも芸術の要素「象徴性」が大事になってきます。

「問題や仮説」に対して客観性や透明性をもって取り組むためには、科学的思考・数学的思考などは不可欠です。一方で、その「問題や仮説」を定義することは、道具や手段、方法論からは発生せず、芸術家的思考が必要になってきます。SASが大切にしているもの、「アナリティクス・ライフサイクル(*1)」の出発点が「問い」であること、そして、すべては「好奇心(*2)」からスタートするという考え方もまさに似たような話です。

次回は、この芸術家的思考がデータ分析基盤システムの構築にとても重要であることの話をしたいと思います。

(*1) アナリティクス・ライフサイクル

*2) プレスリリース:SAS最新グローバル調査:「好奇心」というスキルの重要性が高まる大退職時代

Tags
Share

About Author

小林 泉

Senior Manager, Analytics Platform and Cloud Solution, Customer Advisory Division

1999年SAS Institute Japan入社後、金融・通信・製造・小売・官公庁を中心に顧客分析やサプライチェーン最適化などのアナリティクス・プロジェクトにて、データウェアハウスやアナリティクス・プラットフォームの設計/構築からアナリティクスのコンサルティングを担当。その後、プリセールスとしてSASアナリティクス・ソリューションの提案、顧客のデータ・マネージメント課題解決への従事、最新技術を利用したビッグデータ活用やSAS on Hadoopビジネスの立ち上げ、普及活動に従事。 データのリアルタイム分析と、大規模分析基盤アーキテクチャ、機械学習についての豊富な知見、経験を持つ。 2016よりSAS Viyaの立ち上げを担当し、OSSの世界へ新しい価値を提供するビジネスを推進。2020年からSAS Cloudソリューションの推進を担当。最近の興味は、「現実世界のデジタライゼーションの限界と展望」。

Leave A Reply

Back to Top