データ品質を改善する7つのアナリティクス手法

0

この記事はSAS Institute Japanが翻訳および編集したもので、もともとはGerhard Svolbaによって執筆されました。元記事はこちらです(英語)。

データサイエンティストはデータの取り扱いに多くの時間を費やします。データ品質は、ビジネス課題を解決するために機械学習を適用したり、AIモデルをトレーニングしたりする上での必須要件です。しかし、アナリティクスとデータサイエンスは、データ品質に関する要件を引き上げるだけではありません。データ品質の改善に多大な貢献を果たすこともできます。

欠損値の補完と複雑な外れ値の検出は、恐らくデータ品質に関して最もよく知られた2大アナリティクス機能ですが、決してこの2つだけがそうした機能というわけではありません。本稿では、アナリティクスでデータ品質を改善できる7つの方法についてご説明します

1. 外れ値の検出

アナリティクスは、標準偏差や分位数のような統計的指標に基づく外れ値検出において重要な役割を果たします。これにより、各変量ごとの外れ値の検出が可能になります。また、外れ値検出には、クラスター分析や距離尺度の手法を含めることもできます。これらの手法は、多変量の観点からデータ内の外れ値や異常値を特定することを可能にします。

予測モデルや時系列手法を用いた個々の外れ値検出は、許容範囲や最適な修正値を個別に計算することを可能にします。全体平均は、望ましくないバイアスを分析に混入させる恐れがありますが、グループ内平均はそれに代わる優れた選択肢となる可能性があります。

アナリティクスとデータサイエンスは、外れ値や妥当性の無い値の検出や特定を実行するための手法を提供するだけでなく、代わりに使用すべき最も蓋然性の高い値に関する提案も行います。

2. 欠損値の補完

アナリティクスは、横断的データや時系列データの中の欠損値に対する代替値を提供することができます。平均ベースの手法から、個別の補完値を生成する手法まで、様々な補完手法が存在しますが、いずれも決定木や、時系列向けのスプライン補完のようなアナリティクス手法に基づいています。欠損値の補完により、不完全なデータセットでも分析に使用することが可能になります。

3. データの標準化と重複除去

分析するに当たってユニークキーが利用できないデータベースの中で重複を特定および排除するタスクは、レコード間の類似度を記述する統計的手法に基づいて実行することが可能です。これらの手法は、住所、氏名、電話番号、口座番号のような情報に基づき、レコード間の近接度や類似度に関する指標を提供します。

4. 様々に異なるデータ量のハンドリング

アナリティクスを活用すると、サンプルサイズの設計と検定力分析が求められる対照実験のための最適なサンプルサイズの設計が容易になります。予測モデル作成時にサンプルが小さい場合や、イベント数が少ない場合のために、アナリティクスは希少イベントをモデル化するための手法を提供します。時系列予測に関しても、アナリティクスでは、いわゆる「間欠需要モデル」を利用できます。このモデルは、不定期かつ低頻度に発生する非ゼロ数量のみを用いて時系列をモデル化します。

5. アナリティクスに基づく入力変数変換

アナリティクス手法は、選択した分析手法に適合するように、分布に対する変数変換を実行できます。対数変換や平方根変換は、例えば、「右に裾を引いているデータ」を正規分布に変換するために使用されます。

多くのカテゴリーを伴う変数に関しては、アナリティクスでは、カテゴリを組み合わせるための複数の手法を利用できます。この場合、複数のカテゴリーに対する組み合わせロジックは、各カテゴリー内のオブザベーション数と、ターゲット変数に対する関係とに左右されます。この手法の例としては、決定木や根拠の重み(WOE)計算があります。

テキストマイニングを利用すると、自由形式のテキストを、アナリティクス手法で処理可能な「構造化された情報」に変換することができます。

6. 予測モデル作成のための変数選択

変数選択のための手法は数多く存在します。これらを利用すると、予測モデルを作成する際に、ターゲット変数と強い関係を持つ変数のサブセットを特定することができます。これらの手法の例としては、R2(=決定係数)のようなシンプルな指標や、LARS、LASSO、ELASTIC NETのような高度な指標があります。

多くのアナリティクス手法は、分析モデル自体の中で変数選択のための様々なオプションが利用可能です。例えば、回帰における変数増加法、変数減少法、ステップワイズ法によるモデル選択などが挙げられます。

7. モデル品質やwhat-if分析の評価

アナリティクス・ツールはしばしば、モデルの作成や検証を支援するように設計されています。予測モデルの作成時には、例えば、利用可能なデータが持つ予測力を初期段階で素早く洞察することが重要となるケースは多々あります(これを「高速予測モデリング」と呼ぶこともあります)。

また、これらのツールは、モデルの品質やwhat-if分析用の特徴量を迅速に評価する手段も提供します。what-if分析は、変数や変数グループの重要度を判断する際に特に役立ちます。what-if分析は、特定の変数群が利用できない場合にモデルの予測力がどのように変化するか推計します。

これらの例の出典は、SAS Pressの書籍『Data Quality for Analytics Using SAS』(SASで実現するアナリティクス向けのデータ品質) です。ガーハード(Gerhard)氏によるコンテンツは、GithubSAS Support Communities、同氏のデータサイエンス関連書籍でも見つかります。

Share

About Author

SAS Japan

Leave A Reply

Back to Top