先日、-データサイエンティストに求められる「本当の役割」とは-のブログ記事内で紹介されたデータサイエンティストを目指す学生向けのセミナー「データサイエンティストのキャリアと活躍のかたち」の第1回が11/30(金)に開催されました。この記事では、当日の様子をお伝えします。
セミナーの内容は、データサイエンティストのキャリアと活躍の場や、ビジネスではアナリティクスがどのように活用されているかについて、スピーカーがこれまでの経験をもとに紹介するものです。今回は初回のセミナーということで、講演前にSASが学生向けに実施している取り組みの紹介と、データサイエンティストの役割であるデータを利用しビジネス課題の解決を図るという一連の流れを確認しました。
データサイエンティストに必要な資質
はじめに、データサイエンティストのキャリアについて株式会社GEOJACKASS大友さんの講演です。大友さんは、複数の企業・大学でのデータサイエンス業務の経験がある方です。
まず、JAXAに勤務していたときの業務内容の一例ということで、月周回衛星「かぐや」と小惑星探査機「はやぶさ」のデータを扱って周回軌道の可視化などに携わっていたことを実際の画像とともに説明していました。そして、データサイエンティストの業務の大部分は可視化とデータクレンジングを含む集計作業なので、まずは可視化から始めることを意識してほしいとのことでした。
つぎに、趣味の釣りを題材としたデータ分析の話です。釣りは常に一定の成果が得られるわけではなく、全く釣れない日もあれば、突然100尾釣れる日が続くこともあります。この急上昇する時期をピンポイントで当てようとデータをもとに予測システムを構築することを考えていました。そこで釣果予測をするために観測衛星から海水温、海上風速のデータ、海上保安庁から海流のデータを収集し、自治体の管理公園やTwitter、釣具屋にアップされている情報から過去の釣果実績のデータを収集してこれらを一括で管理する仕組みをつくりました。
こうして収集、整形したデータを利用した分析結果をもとに、宮城にヒラメ釣りに行くと、8枚釣ることができたそうです。また、そのほかの魚も大漁でした。ちなみにヒラメは一度の釣りで1枚釣れたら良いと言われているそうです。このシステムは開発途中とのことですが、仕事ではなくても趣味でデータサイエンスの実践は可能だということです。さいごに、この釣果予測で使った気象データが、仕事であるデータサイエンス業務のなかで役立ったケースを挙げ、自分の趣味、好きなことややりたいことを追求するのが最も大事なことで、技術はあとからついてくる。つまり、まずは目的を持つことが重要だというメッセージを学生に強く伝えていました。
データ活用とアナリティクス・ライフサイクル
つぎに、ビジネスにおけるアナリティクスについてSAS Japanの畝見による講演です。
導入では、アナリティクスに関するキーワードである「機械学習」「ディープラーニング」「人工知能(AI)」などを一枚の図に整理し、それぞれの単語について説明をしていました。
前半は、ビジネス課題の解決にアナリティクスが活用されている事例の紹介です。「顧客理解・マーケティング分析」分野では、ダイレクトメールの配信を効果的にするためにどういった顧客をターゲットにすればよいかを探索する事例、商品の購入履歴や商品への評価をもとに顧客へおすすめ商品を提案するため用いられている決定手法の説明がありました。「不正検知」分野では、マネーロンダリングなどの不正行為を検知するために用いられている複数の手法の説明があり、「品質管理・異常検知」分野では、教師なし学習による異常検知の説明と、実際に航空会社においてエンジン部品故障を予測するために部品のセンサーデータを利用し、修理が必要な状態になる20日以前に故障の予兆を検知し可視化することを実現した事例の紹介がありました。また、品質管理ではブリヂストンにおけるタイヤ生産システムを自動化し品質のばらつきを低減した事例や、ある半導体メーカーは、従来の品質管理の取り組みに加え、ディープラーニングを取り入れた画像認識技術を追加して品質管理を強化しているなどアナリティクスの進化が応用されている事例の紹介がありました。
他にも、スポーツ関連企業では、スタジアムにあるカメラでサッカー選手の背番号を撮影し、各選手のパフォーマンスを分析するため、ディープラーニングによる画像認識が用いられているなどさまざまな業務・業種でアナリティクスが利用されているとのことです。
後半は、AIとアナリティクス活用の課題と対策についての話です。まず、とある企業でAI・機械学習を導入するプロジェクトがうまくいかなかったストーリーを提示して、データ活用とアナリティクスで成果を出せない理由を以下の3つに分類しています。
- データハンドリングの課題(取得・加工・品質・準備)
- モデリングの課題(スキル課題や結果の一貫性など)
- モデル実装の課題(価値創出とガバナンス、実行と評価)
ここで、「データ活用とアナリティクスで成果を出す=ビジネス課題の解決」には、
- Data:アクセス、クレンジング、準備
- Discovery:探索、分析、モデル生成
- Deployment:モデル管理、組み込み、モニタリング
の一連のプロセスからなる循環的な取り組み(アナリティクス・ライフサイクル)が必要だとし、ひとつひとつのステップについての説明がありました。そして、ビジネス価値の創出には、「"問い"→データ準備→探索→モデリング→"問い"→実装→実行→評価→"問い"」という8の字のアナリティクス・ライフサイクルも効果的であるという説明がありました。
さいごに、データサイエンティストの役割として求められることはビジネス価値の創出に貢献することで、そのためにはアナリティクス・ライフサイクルを迅速かつ丁寧に進めることが重要だと伝えていました。
SAS student Data for Good communityの紹介
セミナー内では、学生によるデータサイエンスの学びの例ということで、データを活用して社会的な課題を解決する「Data for Good」への取り組みを発表しました。そして、学生が集まってData for Good活動をするサークル「SAS student Data for Good community」を発足することと、その活動内容や意義についての説明をしました。第2回セミナーで追加的な情報をお伝えする予定です。
講演のあとには、軽食をとりながら講演者と参加者で歓談をしました。さまざまな専攻・学年の方が参加しており、講演者への質問や参加者どうしの会話が絶えず貴重な交流の場となりました。
次回の学生向けセミナー「データサイエンティストのキャリアと活躍のかたち」は1月31日(木)に開催予定です。みなさんの参加をお待ちしております。