データサイエンティストに求められる「本当の役割」とは

0

最近、SNSなどで「AI開発ミステリー ~そして誰も作らなかった~」という記事が話題になりました。人工知能(AI)を導入しようという企業の最悪の顛末をコミカルに描いたジョーク・ストーリーですが、これを面白がる人が多いというのは、多少なりとも日本のIT業界の現実を反映しているのかもしれません。

このような事態になっているのは、AIに対する過度な期待が原因の一つかもしれません。AIは、機械に任せれば素晴らしいことが起こる魔法ではなく、明確に定義されたタスクを実行するように機械をトレーニングする方法です。人間が行うタスクを機械が代替することになるのですが、人間が活動しているシステムのなかで、どの部分を機械にやらせるかを考え、実装し、運用しなければなりません。これは、これまでSASが実現してきたアナリティクスの延長にほかなりません。

「AIが発達すればデータサイエンティストはいらない」という説もあります。データサイエンティストが機械学習を実装する役割だけを持つのであれば、そうかもしれません。しかし、本当に必要とされる仕事が「人間が活動するシステムの中でのアナリティクスの活用」であるなら、まさにAIが使われる仕組みを考え、実装し、運用できる状態にする人材こそが求められているのではないでしょうか。

今年5月、SAS Forum Japan のなかで開催された「データサイエンティスト・キャリア・トラック」では、アナリティクスを活用する組織のなかでデータサイエンティストがどのように活躍するかについて、企業の方々から学生向けの講演をいただきました。例えば、ITや数理モデルを使いこなせることは初級レベルで、ビジネススキルを身に着けながら、最終的には経営幹部候補となるキャリアパスを提示している組織や、一方で、趣味で培ったスキルをビジネスに生かすデータサイエンティストがいます。このように、データサイエンティストのキャリアは組織・個人によってさまざまですので、多様人材がそれぞれの強みをもって活躍することができそうです。

しかし、どの組織・個人でも共通しているのは「目的志向」である点です。何のためにデータ分析をするのか、それがどのような価値を持つのかを明確にしなければ、課題解決のためのデータ分析はできません。データサイエンティストは単にデータ分析の技術で課題解決するだけでなく、「課題設定」をする役割を持たなければ本当の価値は生み出せないのです。そもためには、さまざまな問題意識を抱える人たちと異業種交流をするなど、幅広い視野が必要となりそうです。

データサイエンティスト協会が示した3つのスキルのうち、「ビジネススキル」については、ときどき「ドメイン知識」(業界や業務についての知識)として紹介されることがあります。しかし、本当に必要なのは、その知識を解決すべき課題に変換する力だと考えます。データサイエンティストを目指す学生が、すべての業界・業務についての知識を得ることは難しいですが、アナリティクスが活用される代表的な業界において、どんな課題がどのようにアナリティクスにより解決されているかを知ることで、応用力を身に着けられるのではないでしょうか。そこで、SAS Japanでは、次のような内容の学生向けセミナー「データサイエンティストのキャリアと活躍のかたち」をシリーズで開催します。

  • データサイエンティストのキャリア ... 「データサイエンティスト・キャリア・トラック」の講師陣による、それぞれの組織や個人としてのデータサイエンティストのキャリアや活躍のかたちを紹介
  • ビジネスで活用されるアナリティクス ... データサイエンスやアナリティクスがどのような業界のどんな課題を解決するために活用されているかをSAS社員が紹介
  • 学生によるデータサイエンスの学び ... 学生がどのようにデータサイエンスを学習しているかを学生自身による体験を交えながら紹介

第1回は11月30日(金)に開催します。データサイエンティストを目指す学生の皆様のご参加をお待ちしています。

Share

About Author

Naohiro Takemura (竹村 尚大)

カスタマーアドバイザリー本部 公共ソリューショングループ シニアビジネスデベロップメントスペシャリスト

認知神経科学の研究者として大学・研究機関での勤務を経て、SAS Japan に入社。大学等での研究・教育におけるSASの活用支援を推進しています。

Leave A Reply

Back to Top