Korean

Analytics | Internet of Things
Jeanne (Hyunjin) Byun 0
현대 제조업의 필수 3가지 기술! 디지털 트윈, 분석 그리고 사물인터넷

만약 나의 주치의가 내 디지털 트윈(Digital Twin)을 만들어 실시간으로 나의 상황을 다양한 센서 데이터 등을 통해 업데이트 받을 수 있다면 어떨까요? 현실세계의 기계나 장비, 사물 등을 컴퓨터 속 가상세계에 구현한 디지털 트윈을 통해 몸 속의 잠재적인 질병에 대한 신호를 미리 받을 수 있을지도 모릅니다. 디지털 트윈이 암 관련 질병을 미리

Analytics | Risk Management
SAS Korea 0
은행 자본 계획부터 금융 규제 대비까지, ‘스트레스 테스트’ 완전정복!

은행은 금융위기와 같은 경제적 충격이 외부에서 발생했을 때 채무 불이행에 따른 손실 규모를 파악하고 보유하고 있는 위험자산에 대한 포트폴리오 변화를 빠르게 확인할 수 있어야 하는데요. 특히 글로벌 금융위기 이후 은행권을 대상으로 글로벌 경제 위기에 견딜 수 있는 재무 건전성 역량을 문서화하는 규제요구가 높아지면서 대형 투자은행들이 경제 상황이 극도로 나빠졌을 때

Advanced Analytics | Customer Intelligence | Machine Learning
SAS Korea 0
SAS 커스터머 인텔리전스 360(SAS Customer Intelligence 360): 머신러닝의 블랙 박스 모델이란?

머신러닝이 마케팅 생태계 내에서 지속적으로 발전함에 따라 현대화된 알고리즘 접근법의 해석력이 중요해지고 있습니다. 지난 번 게시했던 머신러닝 해석력 관련 블로그에서 인공지능(AI)과 머신러닝을 신뢰하기 위한 필수 조건, 데이터 세트를 이해하고 해석하는 방법, 그리고 머신러닝 모델의 작동 원리에 대한 인사이트를 도출하는 변수를 표시하는 방법에 대해 설명한 바 있는데요. “우리는 머신러닝에 의해 구동되는 애플리케이션에 둘러싸여 있으며,

1 55 56 57 58 59 99