Most enterprises employ multiple analytical models in their business intelligence applications and decision-making processes. These analytical models include descriptive analytics that help the organization understand what has happened and what is happening now, predictive analytics that determine the probability of what will happen next, and prescriptive analytics that focus on
Tag: data quality
In my prior posts about operational data governance, I've suggested the need to embed data validation as an integral component of any data integration application. In my last post, we looked at an example of using a data quality audit report to ensure fidelity of the data integration processes for
Data governance plays an integral role in many enterprise information initiatives, such as data quality, master data management and analytics. It requires coordinating a complex combination of factors, including executive sponsorship, funding, decision rights, arbitration of conflicting priorities, policy definition, policy implementation, data stewardship and change management. With so much overhead involved in
Data integration teams often find themselves in the middle of discussions where the quality of their data outputs are called into question. Without proper governance procedures in place, though, it's hard to address these accusations in a reasonable way. Here's why.
Data governance has been the topic of many of the recent posts here on the Data Roundtable. And rightfully so, since data governance plays such an integral role in the success of many enterprise information initiatives – such as data quality, master data management and analytics. These posts can help you prepare for discussing
.@philsimon on the need to adopt agile methodologies for data prep and analytics.
Lately I've been binge-watching a lot of police procedural television shows. The standard format for almost every episode is the same. It starts with the commission or discovery of a crime, followed by forensic investigation of the crime scene, analysis of the collected evidence, and interviews or interrogations with potential suspects. It ends
Critical business applications depend on the enterprise creating and maintaining high-quality data. So, whenever new data is received – especially from a new source – it’s great when that source can provide data without defects or other data quality issues. The recent rise in self-service data preparation options has definitely improved the quality of
Hadoop has driven an enormous amount of data analytics activity lately. And this poses a problem for many practitioners coming from the traditional relational database management system (RDBMS) world. Hadoop is well known for having lots of variety in the structure of data it stores and processes. But it's fair to
In my last post, I talked about how data still needs to be cleaned up – and data strategy still needs to be re-evaluated – as we start to work with nontraditional databases and other new technologies. There are lots of ways to use these new platforms (like Hadoop). For example, many