While not on the same level of Rush, I do fancy myself a fan of The Who. I'm particularly fond of the band's 1973 epic, Quadrophenia. From the track "5:15": Inside outside, leave me alone Inside outside, nowhere is home Inside outside, where have I been? The inside-outside distinction is rather apropos
Tag: big data
In my last post, I noted that the flexibility provided by the concept of the schema-on-read paradigm that is typical of a data lake had to be tempered with the use of a metadata repository so that anyone wanting to use that data could figure out what was really in
I've spent a great deal of time in my consulting career railing against multiple systems of record, data silos and disparate versions of the truth. In the mid-1990s, I realized that Excel could only do so much. To quickly identify and ultimately ameliorate thorny data issues, I had to up
Now that another summer of 12-hour family road-trips to Maine and Ohio, pricey engineering and basketball camps for the kids, and beating the heat at the beach are over, I've taken a fresh look at what people are focused on with their data – and what SAS is providing in the data management space.
A few of our clients are exploring the use of a data lake as both a landing pad and a repository for collection of enterprise data sets. However, after probing a little bit about what they expected to do with this data lake, I found that the simple use of
Bigger doesn’t always mean better. And that’s often the case with big data. Your data quality (DQ) problem – no denial, please – often only magnifies when you get bigger data sets. Having more unstructured data adds another level of complexity. The need for data quality on Hadoop is shown by user
Yes. For those keeping score at home, this is my second post in a row starting with a one-word answer to its questioning title. In this case, it’s a question that’s asked a lot and for good reason since big data raises big questions for all data-related disciplines.
.@philsimon on the new challenges of data governance.
Jim Harris says event stream processing determines if big data is eventful and relevant enough to process and store.