全般

全般

Analytics | Artificial Intelligence
0
AI時代にSASが示す新たな価値は

AI時代におけるSASの新たな価値 ~40年の信頼を礎に、日本市場で描く成長戦略~ 2025年8月25日付の週刊BCNでは、日本法人代表の手島主税とSAS米国本社のグローバルチャネルセールス担当VP スーザン・デュシュノーへのインタビューを通じて、AI時代におけるSASの進化と国内戦略が紹介されました。以下にその要点をまとめました。 [週刊BCN掲載記事] https://www.weeklybcn.com/journal/feature/detail/20250828_211479.html ■ 意志決定を支える「アナリティクス」の本質 SASは50年にわたりアナリティクスのリーディングカンパニーとして企業の意志決定を支えてきました。 日本法人代表の手島主税は、「アナリティクスとは単なる分析ではなく、人が意志決定に至るまでのプロセス」と定義。データそのものに価値はなく、意味を持たせて初めてインテリジェンスが生まれると強調しています。 ■ SAS Viya:先進的なアナリティクス・プラットフォーム 「SAS Viya」は、データ準備からAIモデルの構築・運用、意思決定の自動化までを一貫して支援する次世代のアナリティクス・プラットフォームです。クラウドやオンプレミスなど多様な環境に対応し、業務別の分析モデルも活用可能。AIと統計解析の因果検証力を組み合わせ、より精度の高い意志決定を支援します。 ■ 日本市場での成長と課題解決へのアプローチ 日本法人は現在「過去最高の規模で成長中」。既存ユーザーのデータ活用が進む一方で、新規ユーザーの獲得も順調。SASは、ビジネス目的から逆算したデータ整理・保存・分析モデル構築の支援を通じて、データを「価値創出のレイヤー」へと引き上げることを目指しています。 ■ パートナー戦略:多様な連携でエコシステムを構築 ISVやSIer、コンサルティング企業など多様なパートナーと連携し、それぞれの強みを活かしたエコシステムを構築中。SIerにはコンサルティングスキルの育成支援も行い、「市場に合わせたパートナー戦略」を推進しています。 ■ SAS米国本社の視点:日本市場は「極めて重要」 SAS米国本社のグローバルチャネルセールス担当VP スーザン・デュシュノーは、日本市場を「固有のニーズに適合した戦略が必要な重要市場」と位置づけ。AIの倫理的活用や中堅中小企業支援にも注力し、グローバル戦略と日本の成功事例の相互展開を視野に入れています。

Advanced Analytics | Analytics | Artificial Intelligence | Customer Intelligence | Data Management | Machine Learning | SAS Events | Students & Educators
0
SAS Innovate on Tour Tokyo 2025 開催のご報告

2025年7月24日(木)に開催された「SAS Innovate on Tour Tokyo 2025」は、大盛況のうちに無事閉幕いたしました。ご来場いただいた皆さまに、心より御礼申し上げます。また、スポンサーの皆さま、そして運営・制作・広報をはじめとする関係各位の多大なるご支援とご尽力に、深く感謝申し上げます。 開催報告として、弊社代表 手島 主税からの基調貢献に関するメッセージを以下に投稿させていただきます。   SASジャパン創立40周年を迎える節目の年に開催致しました「SAS Innovate on Tour Tokyo 2025」ですが、私が代表を担当させていただいてから3度目となりました。この3年間、毎年ご来場いただく規模が増えておりまして、今年は過去最大の規模で終えることができました。改めまして皆様に心から感謝申し上げます。 意志決定と人との関係性の力をデータ&AIで紐付ける、「人中心型イノベーション」のビジョンのもと、意志決定に携わる経営者とフロントラインワーカー(営業、マーケティング、工場長、主計など)が求める具体的なテーマでお届けしました。 SASは「データはそれ自体では価値を生まない。価値を生むのは意志決定である」という信念のもと、多様化したAIのモデルを統計的な手法と機械・強化学習の組み合わせを実行できる高度なアナリティクス技術を進化させてきました。重要なのは、データをいかに意志決定に結びつけ、行動変容を促すかという「プロセス」です。 私たちが提唱する「意志決定のデータパイプライン」は、ビジネス部門の課題提起から逆算して必要なデータを整備するアプローチです。システム先行ではなく、人の知見や問いを起点にすることで、真に活用されるデータ基盤を構築できます。SASは、意味付けされたデータを各部門に合わせて提供し、お客様の意志決定を支援しています。 今年の基調講演では、日本を代表する経営者、DX推進リーダー、アカデミアのリーダーの皆様とスペシャルゲストとしてお迎えし、示唆に富んだパネルディスカッションを実施しました。 最初のパネルでは、ソニー銀行様、中国銀行様、東京海上ホールディングス様の経営リーダーがご登壇。 益々過去に無い規模でデータが生成されていく時代になり、企業の価値を創り出す宝探しである。またこれから現場への権限移譲とデータリテラシーの底上げを進めながら、最終的な価値を生むのは人のシナリオ、判断力であることが改めて強調されました。特に印象的だったのは、金融商品に“共感価値”を織り込むという発想の転換。金融を単なる機能価値から、人の感性に響く体験へと昇華させる挑戦が語られました。 [パネルディスカッションご登壇者(※登壇順)] ソニー銀行株式会社 南 啓二様 株式会社中国銀行 山縣 正和様 東京海上ホールディングス株式会社 生田目 雅史様 株式会社ソウジョウデータ 西内 啓様 未来の学びの探求’Future Ready’のパネルでは、統計学で多くの著書、大学での教えも推進されてきている西内先生をお迎えし、「問いを立てる力」がAI活用の出発点であること、そして経営から現場まで“問い→仮説→検証”のリズムを組織全体で回すことの重要性が共有されました。 また、アストラゼネカ堀江様、NSW竹村様にもご登壇頂きました。 堀江様には最新のSASのテクノロジー、AIを活用いただいたモダイナイゼーションによるコスト最適化とフロントワーカーの効率性アップの具体的な事例をご紹介いただき、多くの方に反響を頂きました。 [関連記事] アストラゼネカが目指す医療・創薬の新たなステージ──実現に不可欠なデータサイエンス部の役割とは? 竹村様には、新たなSASとの製造業界向けの戦略的パートナーアライアンスの発表をご披露いただき、昨今の製造業界における課題へのソリューション(工場と経営DX)をご紹介頂きました。これからの両社によるパートナーシップに弊社も大きく期待しております。 [関連記事] NSW株式会社様との協業の発表について - SAS Japan 私個人的にも、日本を牽引する各業界のリーダー皆様の志、視座の高さ、人間力に感銘致しました!!改めまして、南様、山縣様、生田目様、堀江様、竹村様に感謝申し上げます。皆様のビジョンの具現化の力になるべく、引続きSASジャパンも社を挙げて果敢に挑戦してまいります。 これからのSASジャパンに乞うご期待ください。 SAS Institute Japan株式会社

Advanced Analytics | Analytics | Artificial Intelligence | Data Management
小林 泉 0
自由と統制:変化しながらもガバナンスを担保するための唯一無二のData & AIプラットフォームとは

競争に勝つためのData & AI プラットフォームに完成はない 「ガウディとサグラダ・ファミリアに学ぶデータ分析基盤アーキテクチャのための原則」で考察したように、変化し続ける市場や消費者、経済環境において、企業・組織が意志決定する対象やその内容は刻々と変化していきます。また、よりよい意志決定のためのData & AI活用のためのテクノロジーも日々変化していきます。そのような環境においては、従来のようなある一時点のユーザー要件に基づいてData & AI環境を準備することは、企業・組織の俊敏性を損ない、まだ見ぬ将来への変化対応力(レジリエンシー)を弱め、結果として常に世の中のトレンドから大きく遅れた後追いのData & AI活用になってしまいます。例えば以下のような状況に陥っているとすると、それはその企業・組織の戦略がそのような常に後追いにしかならない方法論で進めていることになります。 「データ統合基盤」の過ち:あらたに「データ統合基盤」(*1) を構築しようとするが蓄積するデータが決まらずプロジェクトが開始できない、あるいは完了しない。また完了したと思ったのに使われない。 「Data Lakehouseツール」の過ち:アジャイル型を標榜して、クラウド型の「Data Lakehouse用」のデータベースを安価に採用したが、ユーザーの利用が進むにつれてより多くのデータが必要になってきたときに、そのデータベースのコストが指数関数的に膨れ上がる価格モデルであったため、必要なデータが結局蓄積できないという結果になった 「簡易なデータ分析ツール」の過ち:上記と同様にクラウドプラットフォームにほぼ無償でついてくるAI/機械学習機能でデータ分析をスタートする企業も多いです。しかし多くの企業が「データ分析始めました」の域を出ることができず、真にビジネス課題を解決するための機能が足らないことに気づかないまま、データ分析とはこの程度のものだと思い込み、結果として「始めましたプレゼンテーション」を最後に、真にビジネス価値を創出した事例発表に至ってない。 「AIガードレールツール」の過ち:生成AIのテクノロジーを活用して、自社のビジネスを成長させたいが生成AIを安全に使うためのAIガードレールツールを選定したが、いざ導入してみると、そもそも生成AIを活用してビジネス価値を出す案件がなかったり、あるいはテクノロジーの進化が速いために、必要なガバナンス機能がすぐに変わってしまい、当初の投資金額だけでなく、その投資にかかった時間や人的リソースが無駄になってしまった 「データモデル」の過ち:過去の経験のベストプラクティスとしてのデータモデルを導入したが、ある時点のデータモデルとして完成しすぎていて、新たな市場の要件に対応するために新たなデータを追加しようとした際に、対応できなかった 「機能特化型パッケージツール」の過ち:たとえば、金融不正対策アプリケーションにおいては、不正の手法が常に変化する中対策に必要なデータやアルゴリズム・手法をどんどん変化させていく必要があるが、限定的なデータモデル、限定的なアルゴリズムしか持たないツールを採用してしまったために、不正対策をスピード感をもって進化させられていない *1) データ統合基盤の過ち補足:そもそも日本市場・日本語でよく聞く、この「データ統合基盤」という言葉が過ちを生み出している元凶でもあります。データ・マネージメントの目的は、「欲しいときに」、「欲しい形で」、「欲しい品質で」、「欲しい人が」特定のビジネス課題を解決するという目的を達成するためにデータを活用できることです。必ずしも一か所にデータが蓄積されている必要はありませんし、データは膨大なため利用頻度や重要度に応じて格納の仕方を変える必要もありますし、目的に応じて必要なデータやその結合の仕方も変わるため、「あらかじめ統合」しておくことにもあまり意味がありません。もちろん、過去データウェアハウスの時代には、一時的に企業の構造化データを一貫性をもってER図的に定義・実装したデータモデル・データベースが非常に役立った時代もあります。特にそれはアドバンスト・アナリティクスというよりは、レポーティングやOLAPによるデータ探索目的に役立ちました。一方で、機械学習や最適化などアルゴリズム的に高度なデータ分析や、昨今のように非構造化データを扱う場合には、常に新しいデータを使いたくなることが多く、あらかじめデータモデルで定義しておくことの価値は低くなります。 なぜ常に時代遅れになりがちで、AIの取り組みの役に立たないData & AIプラットフォームを構築してしまうのか? 上記のような様々な過ちに企業陥ってしまうのはなぜでしょうか? 20年ほど前は一部のアナリティクス成熟度が高い(例えばこちらを参照ください データリテラシーが経営者の嘆きを救う)企業だけが、解決したいビジネス課題とそれを解決した時の期待効果の試算に基づいてあるいは野心的に大規模にData & AIプラットフォームへの投資を、ユーザー部門が主に自分たちの予算で企画・導入していました。 その後、テクノロジーの進化と共に、プログラマーニーズ、あるいはプログラミングを主たる作業とするデータサイエンティストニーズの高まりにより、データ分析、データサイエンスの取り組みのオーナーがあたかもIT部門やアプリケーションデベロッパーかのような時代になり、Data & AIプラットフォーム投資の意志決定のオーナーがITサイドに移動しました。 手段であるIT、データサイエンス、機械学習やプログラミングの底力が高まるのは良いことなのですが、それにより、「ビジネス課題解決(収益向上・コスト削減・リスクの管理)」というData & AIプラットフォームの目的定義がおざなりになり、あたかもERPを導入するかのような要件定義の仕方でData & AIプラットフォームへの投資の仕方に代わってしまいました。従来は目的ありきで作っていたものが、流行にのって作ってしまってから、後から使い方を考えるという世界に変わってしまったのです。データ統合基盤を作ったのに使われないという嘆き(前述の別ブログを参照のこと)はまさにその象徴です。 一方で、昨今の責任あるAIの視点から、ビジネスニーズに沿ってなんでもかんでも自由にやっていいわけではない 少し前までは、AIは、「人間の特定のタスクを置き換えるもの」という定義でしたが、昨今は違います。AIは人間とは異なる方法で知性を身につけており、ときにそれは人間の能力をはるかに超える能力を発揮します。言い換えると、AIは人間の理解ややり方が及ばない方法で、知的なアクションを行えるようになっています。これは次のようなことを意味しています。 人間の仕事が奪われるという視点は近視眼的:AIはすでに人間とは異なる方法で知性を身につけているので、従来の人間のタスクをそのまま置き換えるわけではありません。もちろんAIの能力を過小に使用して人間の従来のタスクをやらせても良いかもしれませんが、それはAIの潜在能力を生かし切っていません。これまで人間にはできなかったことができるAIを、これまで人間がやってこなかった仕事の量や質に当てはめて、仕事の仕方を効率化するのではなく、「変革」することができるという視点が重要です。 我々は人間社会をより良くする必要がある:一方で、人間の能力を超えた知性を人間の社会活動に取り入れることには最新の注意が必要です。人間の能力を超えた知性を人間の知性で開発されたテクノロジーだけで統制することは不可能です。かつて人間は様々な人間の能力を超えたものを開発してきました。例えば自動車です。自動車の利用を統制するには法律やルールが必要だったように、AIの利用を統制するためにはテクノロジーだけではなくルールや法律が必要になってきます。 人間中心のAI活用には人間のインクルージョンが不可欠:教育機関が生徒不在で「生徒はこれが欲しいはずだ」という取り組みを実施して失敗したり、イベントやマーケティングにおいて企画フェーズに実際のオーディエンスを参加させずに(実際の声を反映させずに)企画者が勝手に良かれと思った企画が失敗に終わるケースは後を絶ちません。オーディエンスが画一的ではなく多様化している今の時代「インクルージョン」が非常に大事になってきています。これは、SAS社が提供する責任あるイノベーションのためのリテラシートレーニング(Responsible Innovation and Trustworthy AI)で学ぶ内容です。AIにはデータが必要なため適切なリテラシーがないと現実世界を切り取っただけのバイアスだらけのデータだけを真実と見なしたAIアプリケーションが構築され、人間社会の倫理と公正性が危険にさらされます。AIアプリケーションの開発プロセスに人間が介在できるData & AIプラットフォームが求められます。 Data &

1 2 3 4 5 54