지난 1회에서는 날로 진화하는 자금세탁 유형에 스마트하게 대응하며 자금세탁 방지 의무를 준수하는 데 AI(인공지능)와 ML(머신러닝)이 어떤 도움을 줄 수 있는지, 그리고 이를 활용하는 전략으로 AML Compliance Analytics Maturity Model을 소개했습니다. 이번 글에서는 AI와 ML을 도입하기 위한 준비 단계인 ‘데이터 품질’에 이어, 나머지 성숙도 단계를 소개합니다. Level 1. 행동 모델(Behavioral Modeling)
Author
[AML 시리즈 #2] 거래 모니터링을 보완하는 AI/ML
[AML 시리즈 #1] 자금세탁 방지 고도화를 위한 AI/ML 도입 방안
1회. 도입 목적과 범위, AML Compliance Analytics Maturity Model 자금세탁 방지 의무가 있는 대부분의 금융 기관과 기업은 자금세탁 방지와 관련된 컴플라이언스 업무 수행을 위해 막대한 인력, 시간, 비용, 노력을 투자하고 있습니다. 자금 세탁 방지 컴플라이언스는 FATF가 설립된 1989년 이후 자금세탁 방지(AML;Anti-Money Laundering), 테러자금조달 방지(CFT; Countering the Financing of Terrorism), 대량살상무기
사기 탐지 전략을 강화하는 8가지 방법
최근 금융감독원은 2017년 국내 보이스피싱 피해액이 2,423억원에 달하며, 전년 대비 26% 증가했다고 발표했습니다. 특히 하반기에만 가상화폐를 이용해 148억원이 탈취된 것으로 밝혀지며 논란이 되고 있는데요. 이렇게 IT 기술이 발달함에 따라 신종 자금세탁 수법이 등장하면서 사기 탐지는 더욱 어려워지고 있습니다. 결국 산업에 관계없이 모든 금융 범죄 조사관은 사기 탐지 기술과 전략을 지속적으로 강화하고,