Tag: 製造業

Analytics
製造業における DX と SQC

こんにちは、SAS Japan の西井です。本ブログにアクセス頂きありがとうございます。私は 2019 年に SAS に入社しましたが、それまでは国内の自動車部品メーカーにて様々な化学素材や工業部材の基礎研究・量産化開発に 10 年以上携わって来ました。SAS 入社後は、国内の製造業のお客様へ業務課題解決のためのデータ分析のソリューション(ソフトウェアやサービス)を提供する仕事に従事しています。今回はそれらの経験を通じて感じた事をタイトルのブログ記事として記しました。製造業での DX 推進の一つのヒントになれば幸いです。 背景 近年、製造業におけるデジタルトランスフォーメーション (DX) が大きな注目を集めています。DX とは一般的に、データやデジタル技術を活用して、業務プロセスを変革し競争優位を確保していくことと定義されています (参照 1) 。 製造業で DX が求められる背景には、ビジネス環境の変化による製品競争力低下への強い危機感があると考えています。日本の製造業はこれまで、各社のコア技術を元にした高度な品質を有する製品群によって、長期にわたり競争力を維持して来ました。しかし2000年代以降、新興国の参入やサプライチェーンのグローバル化など様々なビジネス環境の変化により、その優勢性に陰りが見えるようになりました (参照 2) 。競争優位の再構築に向けて、単独の製品性能による価値だけでなく、バリューチェーンを横断する形での付加価値創出、例えばロジスティックの最適化や顧客サービスの高度化など、いわゆるビジネスモデルの変革へ向けた施策が多くの企業で試みられるようになりました。その際、重要な要素の一つがデジタル技術の活用であり、DX の概念と重なったため、最近より強く注目されるようになって来たと認識しています。 本ブログのスコープ 弊社 SAS Japan は国内の製造業のお客様へ分析ソフトやサービスの提供を行い、業務課題の解決や高度化への変革、DX 推進のサポートを進めております。その中でしばしばお客様から、このような DX の総論を聞いても、実感がわかない、自分の業務とどう関連するのかわからないというご意見をしばしば頂くことがあります。特に競争優位の中核である品質管理に関わっている技術者の方々にとっては、製造データを用いた生産・品質管理活動はかねてから実施しており、今後どのような変化が必要で具体的に何に着手して良いか理解しかねていると感じています。今回、そのような現場技術者の方や企業の DX 推進担当者の方々を対象に、一つの切り口の例として、これまで品質管理手法として長らく活用され今も活躍している SQC (Statical Quality Control: 統計的品質管理) にフォーカスを当て、どのように DX へ組み込み発展させることが可能か、提言したいと思います。 SQC とは SQC は、QC七つ道具などの可視化手法 (管理図など、参照

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (6) – センサデータの品質を向上させる7つのポイント(後編)

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 記事の振り返り: 自覚症状が無いセンサデータの品質問題 これまで「自覚症状が無いセンサデータの品質問題」をテーマとし、「センサデータの品質を向上させる7つのポイント」について(前編)と(中編)の2回に分けてお話ししました。生産ラインのDXのために、センサデータを用いてデータ分析をしているのだが、思うような結果が得られていないケースが市場で発生していることをお伝えし、その原因の一つとして、分析対象となるセンサデータ自体の品質問題があることをお伝えしました。この問題は関係者が気付きにくく、対処方法も専門知識と経験が必要となります。 今回の後編では下記の⑥~⑦について御説明します。  図1. センサデータの品質を向上させる7つのポイント ⑥データレイクに蓄積すべきデータの選択(特徴量抽出) これまでの記事で、課題解決にマッチした高品質なセンサデータを収集することが重要だと述べてきましたが、他にも重要なポイントがあります。データレイクに蓄積すべきデータをどのように選択するのかが、昨今、課題となっています。  理由としては、AIモデル開発と更新のために、ある程度の生データ保存が必要となるからです。 この問題は、PoC段階では大きな問題になりません。PoCと称して大量にデータを取って専門の担当者が解析するからです。問題はPoC後の現場での運用です。 図2. 関連データ/センサ/特徴量の戦略的選択  それはなぜでしょうか? 各種センサが作り出すデータ量は非常に大きく、センサによっては毎分1 GB 以上のデータを生成してしまい、通信ネットワークの負荷の問題や、クラウド上でのデータ保存のコストといった現実的な問題が見えてくるためです。 例えば、図1の右側の表に示すように、サーモグラフィは動画像のため、1分間で1GB以上のデータを生成します。この場合、従量課金/ネットワークトラフィック減への対応が必要となります。温度センサ等のデータ量は、数個であれば小容量ですが、数百個もセンサを使用するケースですと、1分間に数MBにもなります。このようなデータをクラウドへ転送し続ける必要があるのでしょうか? また、高額なセンサを減らすために、できるだけセンサの数を絞りたいという要望も出てきます。これがいわゆるデータ選択(特徴量抽出)をどうたらいのかという課題の本質であり、データ分析上、特徴量の選定が重要だという理由とは異なります。では一体、どんなデータが本当に必要なのか、またデータ量を減らす時にどのような形でエッジコンピューティングを活用すべきなのでしょうか? この技術的な見解は、今後、ブログにて紹介させて頂きたいと思っておりますが、ITとOTの両方の視点から検討する必要があります。 キーワードとしてはプロ同士の意見交換です。 ⑦プロ同士の意見交換が鍵となる ここまで、センサデータの品質がデータ分析に与える影響について、データ分析企業の視点で述べてきましたが、どの注意点も専門知識と経験を要するものばかりです。つまり、成功の鍵は、プロ同士の意見交換だと言えます(図3)。もしくは「業界を超えたコラボレーションの必要性」、「ITとOTとの融合が鍵になる」と表現しても良いかもしれません。 特に現場の熟練者との協業は必須となります。現場の熟練者から伺いたい事としては、測定対象物の詳細、製造プロセスや作業工程、異常状態の詳細、また、どういうメカニズムで異常が起こるのか情報交換させて頂くことが重要です。そして、それがどれだけ困ることなのかをプロジェクトチーム内で意見交換をして頂くことが重要だと言えます。そして、センサデータ収集からデータ分析までを広く見渡した上で、AIを用いたセンサデータ分析システムを構築していくことが成功への近道だと筆者は考えています。難しく感じられる方もおられると思いますが、このプロ同士の意見交換に関しては、日本人エンジニアが得意とする高度な擦り合わせ文化が活かせると信じております。 図3. プロ同士の意見交換が大事  以上、センサデータの品質を向上させる7つのポイントを、3回に分けて紹介致しました。気になる点がございましたら、弊社までお問い合わせ下さい! 前回のブログ

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (5) – センサデータの品質を向上させる7つのポイント(中編)

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 記事の振り返り: 自覚症状が無いセンサデータの品質問題  これまで「自覚症状が無いセンサデータの品質問題」をテーマとし、前回は「センサデータの品質を向上させる7つのポイント(前編)」についてお話ししました。生産ラインのDXのために、センサデータを用いてデータ分析をしているのだが、思うような結果が得られていないケースが市場で発生していることをお伝えし、その原因の一つとして、分析対象となるセンサデータ自体の品質問題があることをお伝えしました。 この問題は関係者が気付きにくく、対処方法も専門知識と経験が必要となります。 そこで、「センサデータの品質を向上させる7つのポイント」について、今回の中編では下記の④~⑤まで御説明します。  図1. センサデータの品質を向上させる7つのポイント ④センサの設置方法  センサは種類に応じて必ずメーカが推奨する設置方法が決められています。図2は圧電型加速度センサの設置方法と注意点であり、加速度センサメーカから提供されている一般的な公開情報です。重要なのは、設置方法によっては必要なデータが得られないことです。例えば、計測可能な上限周波数は、プローブだと1 kHzが限界ですが、ネジ留めだと15 kHz近くまで測れます。これも筆者が経験した事例ですが、ユーザ様が自己流で両面テープを用いて加速度センサを貼り付けておられたために、振動が吸収されてしまい、正確な計測ができていなかったことがありました。これはさすがに、高度なデータ分析を実施する以前の問題でしたので、すぐに改善をお願いしました。 図2.  加速度センサの設置ミスによる振動データのロスト   ⑤データ収集装置の選定  データ収集装置自体の性能不足が問題になることがあります。これは盲点であり、自覚症状が出にくいものです。たとえ高精度なセンサを設置してデータ収集したとしても、適切なデータ収集装置を選定しなかったために、データの精度を低下させてしまうケースがあります。特に重要なのは、サンプリング周波数、分解能、同期計測の3つです(図3)。 図3. 適切な計測装置の使用が不可欠  サンプリング周波数に関しては、計測器の選定基準の一つとして必ずカタログ等に記載されており、また、近年はサンプリング周波数が不足しているデータ収集装置は稀なため、選定ミスの原因にはなりにくくなっています。しかし、分解能に関しては注意が必要です。例えば、加速度センサやマイクロフォンを用いた計測では、 24 bit分解能のデータ収集装置を使用するのが業界標準だが、16 bit分解能の装置を使用しているケースがあります(一般的なオシロスコープは8 bit分解能)。この場合、計測データに与える影響としては、波形再現性の悪化と微少な変化の取りこぼしが発生します。仮に機械学習を用いて異常検出をするとしたら、感度不足が起こる可能性があります(表1)。  表1. センサ計測ミスの原因とデータ分析に与える影響    極めて重要であるにもかかわらず、ほとんど意識されていないのが、同期計測です。各種センサデータ同士の時間的タイミングが取れていない場合は、厳密なデータ分析ができない場合があるからです。例えば、周期性のある回転機械や往復運動機械の異常検知を行う場合には、各種信号の立ち上がりタイミングや信号の発生サイクルが異常検知上、大きな意味を持つため、同期が取れていないデータでは異常検出が困難な場合あります(図4)。厳密には、計測装置の同期精度が、実施したいデータ分析用途に合っているかどうか判断する必要があります。高速動作をする精密機械の状態監視では、マイクロ秒レベルの同期精度が要求される場合もあり、一般的な工作機械ではミリ秒レベルで十分な場合があります。 図4.同期計測の重要性 データ収集装置の選定ミスにより、不具合の発見ができなかったという事例を、筆者は数件経験しています。例えば、高速印刷機の印刷ズレの原因分析に携わった時のことです。原因はベアリングのわずかな損傷で、それが原因で印刷ズレが発生していました。ですが、お客様のお持ちのデータ収集装置は、サンプリング周波数と分解能が低く、異常波形が検出できておりませんでした。そのため、筆者が持ち込んだデータ収集装置を使い原因分析は成功しました。加速度センサは最高のものでしたが、それを活かしきれるデータ収集装置の選定に問題があったという事例でした。 これまでの記事で、センサデータの品質を向上させる7つのポイントのうち5つを紹介してきました。 残り2つのポイントは、後編にて御説明します。 前回のブログ  次回に続く

1 2 3