Tag: DLPy

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
Makoto Unemi (畝見 真) 0
SAS Viya:Python API向けパッケージ:DLPyの最新版1.0拡張機能概要紹介

SASでは、従来からオープン・AIプラットフォームであるSAS Viyaの機能をPythonから効率的に活用いただくためのハイレベルなPython向けAPIパッケージであるDLPyを提供してきました。 従来のDLPyは、Viya3.3以降のディープラーニング(CNN)と画像処理(image action set)のために作成された、Python API向けハイレベルパッケージです。 DLPyではKerasに似たAPIを提供し、より簡潔なコーディングで高度な画像処理やCNNモデリングが可能でした。 そして、この度、このDLPyが大幅に機能拡張されました。 最新版DLPy1.0では、以下の機能が拡張されています。 ■ 従来からの画像データに加え、テキスト、オーディオ、そして時系列データを解析可能 ■ 新たなAPIの提供: ・ RNN に基づくタスク: テキスト分類、テキスト生成、そして 系列ラベリング(sequence labeling) ・ 一般物体検出(Object Detection) ・ 時系列処理とモデリング ・ オーディオファイルの処理と音声認識モデル生成 ■ 事前定義ネットワーク(DenseNet, DarkNet, Inception, and Yolo)の追加 ■ データビジュアライゼーションとメタデータハンドリングの拡張 今回はこれらの拡張機能の中から「一般物体検出(Object Detection)」機能を覗いてみましょう。 SAS Viyaでは従来から画像分類(資料画像1.の左から2番目:Classification)は可能でした。例えば、画像に映っている物体が「猫」なのか「犬」なのかを認識・分類するものです。 これに加えて、DLPy1.0では、一般物体検出(資料画像1.の左から3番目:Object Detection)が可能になりました。 資料画像1. (引用:Fei-Fei Li & Justin Johnson & Serena Yeung’s Lecture

Artificial Intelligence
SAS Viya: DLPyを用いたディープラーニングの判断根拠情報出力

ディープラーニング&画像処理用Python API向けパッケージ:DLPyでは、DLPyの基本的な機能を紹介しました。その中で、ディープラーニングの判断根拠となり得る情報、つまり入力画像のどこに着目しているのかをカラフルなヒートマップとして出力することができるheat_map_analysis()メソッドに触れました。 今回は、heat_map_analysis()メソッドを使用して、ヒートマップを出力する際に指定可能な有効なオプションに関していくつか紹介します。 GPU活用 ヒートマップ解析時の判別(予測)処理再実行回避 ヒートマップ出力対象画像タイプ(正・誤判別)指定 ヒートマップ出力対象画像指定 1.GPU活用 SAS Viyaのディープラーニングでは、ネットワークの層ごとにGPUを使用するかどうかの指定が可能ですが、ヒートマップを出力する際にも、指定したテストデータをモデルに当てはめての予測処理は実行されることになるので、同様にGPUを使用することが可能です。 GPUを使用することで、ヒートマップ出力の時間を短縮することができます。 2.ヒートマップ解析時の判別(予測)処理再実行回避 最初にheat_map_analysis()メソッドを実行する際には、モデルにテストデータを当てはめて判別(予測)処理が行われますが、以降、heat_map_analysis()メソッドを使用して、必要な判断根拠情報を再出力する際には、最初の実行時に計算された値を再利用するので、都度再計算(判別・予測処理)は行わず、より効率的、迅速に、ヒートマップを出力することができます。 「1.GPU活用」でのheat_map_analysis()メソッドではパラメータとして「data=te_img」が指定され、モデルにテストデータを当てはめていましたが、下記の再実行の例では、このパラメータは指定されず、結果のメッセージにも「Using results from model.predict()」と、実行済みの計算結果が使用されている旨が表示されています。 3.ヒートマップ出力対象画像タイプ(正・誤判別)指定 ディープラーニングのモデルにテストデータを当てはめて判別(予測)した結果として、正しく判定された画像と間違った判定が下された画像があります。 heat_map_analysis()メソッドの「img_type」パラメータを使用し、正:”C”(Correct Classification), 誤:“M”(Miss Classified), すべて:“A”(All)、を指定して該当画像の判断根拠情報を出力することが可能です。 以下は、誤判別された画像(img_type=‘M’)の判断根拠情報出力例です。 画像のどの部分に着目して、間違った判断に至ったのかを確認することができるので、モデル精度を改善するためには、学習用にどのような画像が必要なのかといった、示唆も与えてくれます。 4.ヒートマップ出力対象画像指定 heat_map_analysis()メソッドの「filename / image_id」パラメータを使用し、特定の画像を指定して、出力することも可能です。 以下は、画像ファイルリストの上位2つの画像のヒートマップをファイル名指定で出力している例です。 以下は、画像ファイルリストの先頭の画像のヒートマップをID指定で出力している例です。 上記例の詳細に関しては、こちらのGitfubサイトをご覧ください。  DLPyの詳細に関しては、こちらのGithubサイトをご覧ください。  

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
「Pipefitter」の応用 ~CNN(特徴抽出器)+機械学習(分類器)でCNNの欠点を補完

前回は、SASの「Pipefitter」の基本的な使用方法を紹介しました。続く今回は、基本内容を踏まえ、ひとつの応用例を紹介します。 SAS Viyaのディープラーニング手法の一つであるCNNを「特徴抽出器」として、決定木、勾配ブースティングなどを「分類器」として使用することで、データ数が多くないと精度が出ないCNNの欠点を、データ数が少なくても精度が出る「従来の機械学習手法」で補強するという方法が、画像解析の分野でも応用されています。 以下は、SAS Viyaに搭載のディープラーニング(CNN)で、ImageNetのデータを学習させ、そのモデルに以下の複数のイルカとキリンの画像をテストデータとして当てはめたモデルのpooling層で出力した特徴空間に決定木をかけている例です。 In [17]: te_img.show(8,4) 以下はCNNの構造の定義です。 Build a simple CNN model   In [18]: from dlpy import Model, Sequential from dlpy.layers import * from dlpy.applications import *   In [19]: model1 = Sequential(sess, model_table='Simple_CNN')   Input Layer   In [20]: model1.add(InputLayer(3, 224, 224, offsets=tr_img.channel_means))   NOTE: Input

1 5 6 7 8