“어떤 알고리즘을 사용해야 할까요?” 수많은 종류의 머신러닝 알고리즘을 맞닥뜨린 초급자 분들이 가장 많이 물어보는 전형적인 질문인데요. 사실 이 질문에 대한 답변은 하단 내용을 비롯한 수많은 요인에 따라 달라집니다. 데이터의 크기, 품질, 특성 가용 연산(계산) 시간 작업의 긴급성 데이터를 이용해 하고 싶은 것 그렇기에 숙련된 데이터 과학자(Data scientist)조차도 여러 알고리즘을 직접
“어떤 알고리즘을 사용해야 할까요?” 수많은 종류의 머신러닝 알고리즘을 맞닥뜨린 초급자 분들이 가장 많이 물어보는 전형적인 질문인데요. 사실 이 질문에 대한 답변은 하단 내용을 비롯한 수많은 요인에 따라 달라집니다. 데이터의 크기, 품질, 특성 가용 연산(계산) 시간 작업의 긴급성 데이터를 이용해 하고 싶은 것 그렇기에 숙련된 데이터 과학자(Data scientist)조차도 여러 알고리즘을 직접
1980년대 후반에만 해도 머신러닝(machine learning)이나 데이터 과학자와 같은 개념은 없었습니다. 대신 통계, 분석, 데이터 마이닝, 데이터 모델링과 같은 단어가 사용됐는데요. 이후 글로벌 기업들은 30년 이상 머신러닝 모델을 연구해 왔으며, 페이스북의 이미지 인식 소프트웨어, 아마존의 음성 비서 알렉사, KT의 인공지능 서비스 기가 지니(GiGA Genie)까지 그 결과들이 연이어 쏟아지고 있죠! 이러한 결실
I hate my title, but I’m going to stick with it. In spite of it, I hope I can encourage you to pay attention to the current automation revolution and actively contribute to augmention-fueled innovation. If everyone understands those terms and actively tries to stay on top of how they