Tag: データサイエンティストのキャリア

SAS Events | Students & Educators
0
第4回「データサイエンティストのキャリアと活躍のかたち」レポート

データサイエンティストを目指す学生向けのセミナー「データサイエンティストのキャリアと活躍のかたち」の第四回が7/25(木)に開催されました。第一回・第二回・第三回に引き続き、今回も大変多くの学生の皆様に参加していただき、有意義なセミナーとなりました。本記事では、当日の様子についてご紹介します。 本セミナーでは、データサイエンティストのキャリアと活躍の場や、ビジネス上でアナリティクスがどのように活用されるかについて、スピーカーがこれまでの経験をもとに紹介しました。 SHIONOGIにおける開発領域のData Scientistとは? はじめに、データサイエンティストのキャリアについて、塩野義製薬株式会社の木口さんのご講演です。木口さんはSHIONOGIのData Science Groupに所属されている方です。Data Science Groupは主にデータサイエンティストやプログラマーで構成され、生物統計家やデータマネージャーと協業して医薬品開発を行っています。 最初に、医薬品開発におけるデータ活用の様子について紹介していただきました。医薬品開発領域では1つの医薬品が世の中で販売されるまでに、臨床試験を何度も繰り返して仮説を検証します。Data Science Groupは、この過程にデータ活用とデータ駆動型医薬品開発を取り入れています。 医薬品開発で活用されるデータには、生物統計家が仮説の推定・検定を行うための臨床試験データやデータサイエンティストが新たな仮説を設定するためのリアルワールドデータ、仮想臨床試験などをするためのシミュレーションデータがあります。これらのデータを組み合わせて活用して医薬品開発の効率化を行っています。 次にデータサイエンティストに求められる役割とスキルについてです。SHIONOGI医薬品開発領域が考えるデータサイエンティストの役割は、科学的にデータを活用するスペシャリストとして、データ駆動型の業務改善を行い、製品価値最大化のためのデータ駆動型医薬品開発をすることであると伝えていただきました。 また、製品価値最大化のためのデータ駆動型医薬品開発はデータサイエンティストが社内外のデータに基づく仮説の導出をし、その仮説をもとに生物統計家が計画立案をして臨床研究で検証するというサイクルがうまく動くことが理想形であると伝えていただいきました。 この役割を果たすために必要なスキルには、統計理論の知識やプログラミングの技術、ITスキルなどもありますが、木口さんは特にチームの中で自分の思っていることを伝える・相手の意思を受け入れるといった「ビジネススキル」が大切であるとおっしゃっていました。 実際にSHIONOGIの様々な分野の技術を組み合わせた活動事例の紹介をしていただいた最後に、「仕事は、多くの失敗から得たヒントをパズルのように組みあわせ、成功に導くこと」であるというメッセージを学生の皆さんに伝えていただきました。ピースは個人が持つ得意な部分・とがった知識でもあり、それらを組み合わせることで新しい仮説を導くことが役割であるという言葉が印象的でした。 不正・犯罪対策におけるアナリティクスの活用 続いて、不正・犯罪対策の分野おいて活用されるアナリティクスについて、SAS Japanの新村による講演です。 今回の講演では、「不正・犯罪対策」の一例としてマネーミュール(知らずのうちに不正な送金に加担してしまう人)を金融機関とのやり取りから検知する活用例を紹介しました。 怪しいお金のやり取りを不正犯罪の被害者口座から見つけるためには、フィルタリングや異常値検知、機械学習、ネットワーク分析など様々な手段が使われています。それぞれの手段には特徴と難点があるため、SASでは複数の適切な手法を組み合わせて効率的に活用し、高精度な不正検知と新たな不正への対応を実現する(ハイブリットアプローチ)を取り入れています。 後半には、不正検知におけるアナリティクスの特徴をいくつか紹介しました。まず、サービス設計によるモデル・チューニング方針について、 ・本当に不正が起きていて、その不正を予測できる検出率を高める ・本当は不正が起きていないのに、それを不正と予測してしまう誤検知を減らす の両方について考えなければならなりません。また、不正検知はビジネスにおいて対外的な説明を求められるため、誰が見ても検知結果を理解できるような可視化をすることが重要です。さらに、不正対策コストと不正被害額の差を考慮するために経済合理性と理想のバランスが求められることも特徴です。 今回の講演内容はどちらも“データサイエンス”の分野としてイメージが浮かびにくいものだったように思われます。「いい医薬品を開発する」ことや「不正・犯罪を検知する」ためのアナリティクスについて知るきっかけになる、とても貴重な講演でした。 SAS student Data for Good communityの紹介 最後に、学生のデータサイエンスの学びの場としてSAS Student Data for Good communityと Data for Good 勉強会について紹介しました。 Data for Goodとは様々な社会問題に対し、データを用いて解決する取り組みです。今回はData for Goodの具体例としてシアトルの交通事故改善を紹介しました。学生が主体となってこの活動をより推進するため、SASではと「Data for Good勉強会」と「SAS Student

SAS Events | Students & Educators
0
第3回「データサイエンティストのキャリアと活躍のかたち」レポート

データサイエンティストを目指す学生向けのセミナー「データサイエンティストのキャリアと活躍のかたち」の第三回が3/19(火)に開催されました。第一回・第二回に引き続き今回も多くの学生の皆様に参加していただき、有意義なセミナーとなりました。本記事では、当日の様子についてご紹介します。 本セミナーでは、データサイエンティストのキャリアと活躍の場や、ビジネス上でのアナリティクス活用方法について、スピーカーがこれまでの経験をもとにご紹介しました。 SASにおけるデータサイエンティスト はじめに、データサイエンティストのキャリアやスキルについてSAS JapanのSebastian Wikanderより講演を行いました。 前半は、自身のキャリアや経験をもとにした、データサイエンティストのキャリアの紹介です。キャリアの初めはトラックメーカーに就職。様々なビジネスモデルをデータを用いて分析することに魅力とやりがいを感じ、SASに転職しました。SASでの仕事は年齢・学歴・国籍等、多様性があり、より良いパフォーマンスが発揮できます。具体的な仕事例として、大手IT企業の業務プロセス改善プロジェクトと部品メーカーにおけるディープラーニング活用プロジェクトを紹介し、SASと顧客のノウハウを合わせるチームワークの重要性や、過去の学びやスキルをもとに常に新しいチャレンジへと挑戦する楽しさなどを伝えました。 次に、データサイエンティストに必要なスキルの紹介です。核となるデータサイエンススキルの他にも、プログラミングスキル、統計学や機械学習の知識、ビジネス能力、英語力を含むコミュニケーションスキルなど多種多様なスキルが必要だとし、データサイエンティストは事例に合わせて最適なスキルを活用する「スペシャリストよりジェネラリスト」という言葉は印象的でした。 最後にデータサイエンティストのやりがいとして、様々なアプローチの中から一つを選択する「クリエイティブ」な側面、ビジネスとしての「人との関わり」という点、「新たなチャレンジ」を続けワクワクした日々を送れるという点を挙げ、より多くの学生に興味を持って欲しいというメッセージを伝えました。       アナリティクス活用領域の概要 リスク管理 続いて、リスク管理におけるアナリティクスの活用について、SAS Japanの柳による講演です。 最初にビジネスにおけるリスクについて紹介しました。リスクとは「不確実性」であると指摘し、その不確実性を想定の範囲内で「リスク管理」し「収益−損失の最大化」という目的を達成するためにアナリティクスが活用されていると紹介しました。 具体例として、金融機関における「規制対応のリスク管理」と「収益を上げるためのリスク管理」を挙げています。前者は政策等で一定の枠組みが決まっており事象の予測が行いやすく、アナリティクスが最大限活用されています。一方後者は変動が大きく様々なシナリオが想定されるため、経済情勢・社会情勢等に基づいた多様なモデルをもとにシミュレーションを重ね、意思決定の判断基準にしています。 最後に金融機関におけるAIの活用について紹介しました。業務の効率化や人的ミス排除等を目的とした従来のIT化とは異なり、人間では処理できないほど膨大となったデータを扱うために金融機関でAIを導入する動きが進んでいるとのことです。しかし、AIの思考がブラックボックス化され判断の説明可能性が低いという問題点もあり、AIの思考の透明性をどう保証するかが今後の大きな課題の一つであると伝えました。       SASの学生向けData Science 推進活動 最後に、学生のデータサイエンスの学びの場としてData for Good 勉強会とSAS Student Data for Good communityを紹介しました。Data for Goodとは様々な社会問題をデータを用いて解決する取り組みであり、これまでにも世界の絶滅危惧種や通勤ラッシュ時の鉄道混雑緩和をData for Goodの活動具体例として紹介しました。学生が主体となりこの活動をより推進するため、SASでは「Data for Good勉強会」と「SAS Student Data for Good Community」という活動を企画しています。 Data for Good 勉強会とは、SASやData Kind(Data for Goodを推進する社会団体)の実施したData

Data for Good | SAS Events | Students & Educators
0
第2回「データサイエンティストのキャリアと活躍のかたち」レポート

第1回に引き続き、データサイエンティストを目指す学生向けのセミナー「データサイエンティストのキャリアと活躍のかたち」の第2回が1/31(木)に開催されました。当日の様子について紹介します。 このセミナーはデータサイエンティストのキャリアと活躍の場や、ビジネスではアナリティクスがどのように活用されているかについて、スピーカーがこれまでの経験をもとに紹介するものです。 経営幹部候補としてのデータサイエンティスト はじめに、データサイエンティストのキャリアについて、コニカミノルタジャパン株式会社・松木さんの講演です。コニカミノルタジャパンでは、2016年にデータサイエンス推進室を設置し、コピー機の買替・故障・受注の予測などにデータ分析を活用しているそうです。 まず、成果を出せるデータサイエンティストのキャリア形成についての話です。この話題の中では「データサイエンティストとは経営幹部候補、すなわち分析・数理モデルで経営課題を解決できる人材である」という一文がとても印象的でした。松木さんは、ただ分析作業ができる・数理モデルを作成できるだけではなく、それらの優れた技術をツールとして経営課題の解決ができる人材というのがデータサイエンティストのあるべき姿と考えると言っていました。 次に、データサイエンティストに求められるスキルについてです。そのスキルとは主に、分析スキル・ITスキル・ビジネススキルに分けられますが、その中でもビジネススキルは他の2つに比べて教育が困難であり、知識と経験が必要です。そこで実際にコニカミノルタジャパンでは、分析・ITスキルをもつデータサイエンティストと、ビジネススキルを持つ他部署メンバーとが共同して分析を行う仕組み(=タスクフォースユニット)でデータサイエンティストのビジネススキルを補うことを行っているそうです。 こうして、組織単位で分析を進めるにあたって欠かせないのがコミュニケーション能力です。ここで言うコミュニケーション能力とは、単純に人と仲良くなれるという意味よりも、「相手を理解するための、幅広い知識を習得する」「相手が理解できるようにデータサイエンスの見える化をする」ことを指します。現場や他部署メンバーの考えを理解するためのビジネスにおける幅広い知識、データサイエンスの知見がない人でも一目でわかる環境の構築が必要であるとのことでした。   講演の最後には、「データサイエンティストは多種多様な専門性が必要である」というメッセージをいただきました。これまでの話にもあったように、数理モデルの開発といった場面は仕事の一部で、ビジネススキルやコミュニケーション能力を活用することでいかに他の社員に、現場に「みせる」かが重要であるということを学生に伝えていただきました。       ビジネスで活用されるアナリティクス “顧客理解” 次に、ビジネスで活用されるアナリティクスについて、SAS Japanの庄子による講演です。 「通信販売サイトから自分だけのクーポンが送られてきた」、「動画配信サービスに自分好みの動画がおすすめされる」、「携帯電話の学割があれほどまで安い」などといった例を挙げ、私たちが日常生活においてデータ分析の恩恵をどれだけ受けていると思うか?という質問を導入として講義は始まりました。また、消費者のうち64%は支払う金額よりもそのもの自体の質を重視するにもかかわらず、それを完璧に捉えることが出来ている企業はわずか6%であるという話もあり、顧客理解の重要性を直観的に感じることが出来ました。   顧客理解について、前半ではそのコンセプトの紹介です。 顧客理解とは何を理解するのか?代表的な3つの項目があります。 「顧客の優良度・リスク」:どの顧客が特に大事か、損をもたらす可能性が高いか 「顧客の嗜好」:個々に異なる顧客の好みに対して何を薦めるべきか 「顧客の行動」:顧客の生活パターンや生活圏等を考慮する この3項目について、携帯キャリアの顧客理解に関する施策を顧客の加入から解約の流れに沿って例示していました。 後半は具体的に3つの項目についてどのような分析を行っているかについて、前半にもあった携帯キャリアの顧客理解に関連する具体的な施策に3項目をそれぞれ当てはめて紹介していました。ここではその一部を簡潔に紹介します。 「顧客の優良度」:生涯価値(Life Time Value)の算出(どれくらい先まで契約の継続をしそうか、機種変更はいつ頃しそうか) 「顧客の嗜好」:テキストを用いた趣味嗜好判定 「顧客の行動」:位置情報による生活圏の特定 最後には、「企業のデータ活用はまだまだ発展途上でみなさんの活躍が企業や世の中を大きく変える」という前向きなメッセージと、情報倫理のプライバシー懸念について「倫理観が大事”Don’t Be Evil”(by Google)」という助言の両方を学生に向けたメッセージとして伝えていました。   SAS student Data for Good communityの紹介 セミナーの最後には、学生のデータサイエンティストに向けた学びとしてSAS student Data for Good communityについて紹介しました。 「Data for Good」とは多岐にわたる社会的なテーマから課題を提示し、データを活用して解決しようとするものです。これまでにブログで紹介した世界の絶滅危惧種や通勤ラッシュ時の鉄道混雑緩和をData

Data for Good | SAS Events | Students & Educators
0
第1回「データサイエンティストのキャリアと活躍のかたち」レポート

先日、-データサイエンティストに求められる「本当の役割」とは-のブログ記事内で紹介されたデータサイエンティストを目指す学生向けのセミナー「データサイエンティストのキャリアと活躍のかたち」の第1回が11/30(金)に開催されました。この記事では、当日の様子をお伝えします。 セミナーの内容は、データサイエンティストのキャリアと活躍の場や、ビジネスではアナリティクスがどのように活用されているかについて、スピーカーがこれまでの経験をもとに紹介するものです。今回は初回のセミナーということで、講演前にSASが学生向けに実施している取り組みの紹介と、データサイエンティストの役割であるデータを利用しビジネス課題の解決を図るという一連の流れを確認しました。   データサイエンティストに必要な資質 はじめに、データサイエンティストのキャリアについて株式会社GEOJACKASS大友さんの講演です。大友さんは、複数の企業・大学でのデータサイエンス業務の経験がある方です。 まず、JAXAに勤務していたときの業務内容の一例ということで、月周回衛星「かぐや」と小惑星探査機「はやぶさ」のデータを扱って周回軌道の可視化などに携わっていたことを実際の画像とともに説明していました。そして、データサイエンティストの業務の大部分は可視化とデータクレンジングを含む集計作業なので、まずは可視化から始めることを意識してほしいとのことでした。 つぎに、趣味の釣りを題材としたデータ分析の話です。釣りは常に一定の成果が得られるわけではなく、全く釣れない日もあれば、突然100尾釣れる日が続くこともあります。この急上昇する時期をピンポイントで当てようとデータをもとに予測システムを構築することを考えていました。そこで釣果予測をするために観測衛星から海水温、海上風速のデータ、海上保安庁から海流のデータを収集し、自治体の管理公園やTwitter、釣具屋にアップされている情報から過去の釣果実績のデータを収集してこれらを一括で管理する仕組みをつくりました。 こうして収集、整形したデータを利用した分析結果をもとに、宮城にヒラメ釣りに行くと、8枚釣ることができたそうです。また、そのほかの魚も大漁でした。ちなみにヒラメは一度の釣りで1枚釣れたら良いと言われているそうです。このシステムは開発途中とのことですが、仕事ではなくても趣味でデータサイエンスの実践は可能だということです。さいごに、この釣果予測で使った気象データが、仕事であるデータサイエンス業務のなかで役立ったケースを挙げ、自分の趣味、好きなことややりたいことを追求するのが最も大事なことで、技術はあとからついてくる。つまり、まずは目的を持つことが重要だというメッセージを学生に強く伝えていました。   データ活用とアナリティクス・ライフサイクル つぎに、ビジネスにおけるアナリティクスについてSAS Japanの畝見による講演です。 導入では、アナリティクスに関するキーワードである「機械学習」「ディープラーニング」「人工知能(AI)」などを一枚の図に整理し、それぞれの単語について説明をしていました。 前半は、ビジネス課題の解決にアナリティクスが活用されている事例の紹介です。「顧客理解・マーケティング分析」分野では、ダイレクトメールの配信を効果的にするためにどういった顧客をターゲットにすればよいかを探索する事例、商品の購入履歴や商品への評価をもとに顧客へおすすめ商品を提案するため用いられている決定手法の説明がありました。「不正検知」分野では、マネーロンダリングなどの不正行為を検知するために用いられている複数の手法の説明があり、「品質管理・異常検知」分野では、教師なし学習による異常検知の説明と、実際に航空会社においてエンジン部品故障を予測するために部品のセンサーデータを利用し、修理が必要な状態になる20日以前に故障の予兆を検知し可視化することを実現した事例の紹介がありました。また、品質管理ではブリヂストンにおけるタイヤ生産システムを自動化し品質のばらつきを低減した事例や、ある半導体メーカーは、従来の品質管理の取り組みに加え、ディープラーニングを取り入れた画像認識技術を追加して品質管理を強化しているなどアナリティクスの進化が応用されている事例の紹介がありました。 他にも、スポーツ関連企業では、スタジアムにあるカメラでサッカー選手の背番号を撮影し、各選手のパフォーマンスを分析するため、ディープラーニングによる画像認識が用いられているなどさまざまな業務・業種でアナリティクスが利用されているとのことです。 後半は、AIとアナリティクス活用の課題と対策についての話です。まず、とある企業でAI・機械学習を導入するプロジェクトがうまくいかなかったストーリーを提示して、データ活用とアナリティクスで成果を出せない理由を以下の3つに分類しています。 データハンドリングの課題(取得・加工・品質・準備) モデリングの課題(スキル課題や結果の一貫性など) モデル実装の課題(価値創出とガバナンス、実行と評価) ここで、「データ活用とアナリティクスで成果を出す=ビジネス課題の解決」には、 Data:アクセス、クレンジング、準備 Discovery:探索、分析、モデル生成 Deployment:モデル管理、組み込み、モニタリング の一連のプロセスからなる循環的な取り組み(アナリティクス・ライフサイクル)が必要だとし、ひとつひとつのステップについての説明がありました。そして、ビジネス価値の創出には、「"問い"→データ準備→探索→モデリング→"問い"→実装→実行→評価→"問い"」という8の字のアナリティクス・ライフサイクルも効果的であるという説明がありました。 さいごに、データサイエンティストの役割として求められることはビジネス価値の創出に貢献することで、そのためにはアナリティクス・ライフサイクルを迅速かつ丁寧に進めることが重要だと伝えていました。   SAS student Data for Good communityの紹介 セミナー内では、学生によるデータサイエンスの学びの例ということで、データを活用して社会的な課題を解決する「Data for Good」への取り組みを発表しました。そして、学生が集まってData for Good活動をするサークル「SAS student Data for Good community」を発足することと、その活動内容や意義についての説明をしました。第2回セミナーで追加的な情報をお伝えする予定です。   講演のあとには、軽食をとりながら講演者と参加者で歓談をしました。さまざまな専攻・学年の方が参加しており、講演者への質問や参加者どうしの会話が絶えず貴重な交流の場となりました。   次回の学生向けセミナー「データサイエンティストのキャリアと活躍のかたち」は1月31日(木)に開催予定です。みなさんの参加をお待ちしております。