We have updated our software for improved interpretability since this post was written. For the latest on this topic, read our new series on model-agnostic interpretability. While some machine learning models – like decision trees – are transparent, the majority of models used today – like deep neural networks, random forests, gradient boosting
Monthly Archives: October, 2018
Improving model interpretability with LIME
Four machine learning strategies for solving real-world problems
There are four widely recognized styles of machine learning: supervised, unsupervised, semi-supervised and reinforcement learning. These styles have been discussed in great depth in the literature and are included in most introductory lectures on machine learning algorithms. As a recap, the table below summarizes these styles. For a comprehensive mapping
Why you need GPUs for your deep learning platform
Deep learning has taken off because organizations of all sizes are capturing a greater variety of data and can mine bigger data, including unstructured data. It’s not just large companies like Amazon, SAS and Google that have access to big data. It’s everywhere. Deep learning needs big data, and now