活學活用關聯分析--如何運用SAS EM進行購物籃分析(1)
連續幾期介紹幾個重要預測模型分析演算方法的實務應用,這一期Dr.SAS接著介紹一下實務上也經常被應用的購物籃分析,以及如何運用SAS EM的關聯分析節點(Association Node)來進行相關分析。
連續幾期介紹幾個重要預測模型分析演算方法的實務應用,這一期Dr.SAS接著介紹一下實務上也經常被應用的購物籃分析,以及如何運用SAS EM的關聯分析節點(Association Node)來進行相關分析。
分群結果重在行銷命名與應用 分群分析的結果產出通常不會一次就滿足分析者的需求,往往會透過多次的產出結果的解讀與群集的調整,來找到最適合的群集結果。 分群的結果追求的不是模型的準度而是它的應用性,哪一個群集結果的產出最能讓行銷人員解讀與進一步應用,才是適切的分群結果。因此如何快速的調整或找到適合的分群結果,才是學習分群的重點之一。
階層分類購物籃分析首要的第一步就是產品分類資料集的準備,當產品的品項繁複時,直接透由關聯節點(Association Node)來進行購物籃分析,關聯分析所得的關聯規則會是細項產品間的交易關聯,甚至可能細到不同品牌,反而不容易看出消費者的整體的消費趨勢。因此透由SAS EM的購物籃節點(Market Basket Node)來進行分析則可以解決傳統購物籃分析的問題,購物籃節點透過商品間的階層關係事先建立,再進行關聯分析時則可以解決上述分析解讀的問題。