Data integration, on any project, can be very complex – and it requires a tremendous amount of detail. The person I would pick for my data integration team would have the following skills and characteristics: Has an enterprise perspective of data integration, data quality and extraction, transformation and load (ETL): Understands
Uncategorized
I am currently cycling through a schema-on-read data modeling process on a specific task for one of my clients. I have been presented with a data set and have been asked to consider how that data can be best analyzed using a graph-based data management system. My process is to
In my prior two posts, I explored some of the issues associated with data integration for big data and particularly, the conceptual data lake in which source data sets are accumulated and stored, awaiting access from interested data consumers. One of the distinctive features of this approach is the transition
Integrating big data into existing data management processes and programs has become something of a siren call for organizations on the odyssey to become 21st century data-driven enterprises. To help save some lost time, this post offers a few tips for successful big data integration.
There is a time and a place for everything, but the time and place for data quality (DQ) in data integration (DI) efforts always seems like a thing everyone’s not quite sure about. I have previously blogged about the dangers of waiting until the middle of DI to consider, or become forced
While not on the same level of Rush, I do fancy myself a fan of The Who. I'm particularly fond of the band's 1973 epic, Quadrophenia. From the track "5:15": Inside outside, leave me alone Inside outside, nowhere is home Inside outside, where have I been? The inside-outside distinction is rather apropos
In my last post, I noted that the flexibility provided by the concept of the schema-on-read paradigm that is typical of a data lake had to be tempered with the use of a metadata repository so that anyone wanting to use that data could figure out what was really in
The intersection of data governance and analytics doesn’t seem to get discussed as often as its intersection with data management, where data governance provides the guiding principles and context-specific policies that frame the processes and procedures of data management. The reason for this is not, as some may want to
I've spent a great deal of time in my consulting career railing against multiple systems of record, data silos and disparate versions of the truth. In the mid-1990s, I realized that Excel could only do so much. To quickly identify and ultimately ameliorate thorny data issues, I had to up
Now that another summer of 12-hour family road-trips to Maine and Ohio, pricey engineering and basketball camps for the kids, and beating the heat at the beach are over, I've taken a fresh look at what people are focused on with their data – and what SAS is providing in the data management space.