.@philsimon says that, once again, there's quite a bit to learn from Amazon.
Uncategorized
I've been working on a pilot project recently with a client to test out some new NoSQL database frameworks (graph databases in particular). Our goal is to see how a different storage model, representation and presentation can enhance the usability and ease of integration for master data indexes and entity
As the application stack supporting big data has matured, it has demonstrated the feasibility of ingesting, persisting and analyzing potentially massive data sets that originate both within and outside of conventional enterprise boundaries. But what does this mean from a data governance perspective?
We've all seen it before – a truck on the side of the road with the hood up and the driver desperate to figure out what’s wrong. In this situation, not only is a customer not receiving goods on time, but the problem is exacerbated by the fact that most
.@philsimon looks at the challenges and opportunities that big data pose for data governance.
Streaming technologies have been around for years, but as Felix Liao recently blogged, the numbers and types of use cases that can take advantage of these technologies have now increased exponentially. I've blogged about why streaming is the most effective way to handle the volume, variety and velocity of big data. That's
What are the most useful skills a data quality leader can possess? As an editor of an online data quality magazine, I naturally get asked this type of question regularly at events and meetups. My answer may surprise some who are expecting a data-centric response. I firmly believe that sales and
.@philsimon says that privacy is your issue as well whether you believe it or not.
In the previous three blogs in this series, we talked about what metadata can be available from source systems, transformation and movement, and operational usage. For this final blog in the series, I want to discuss the analytical usage of metadata. Let’s set up the scenario. Let's imagine I'm a
In my last post we started looking at the issue of identifier proliferation, in which different business applications assigned their own unique identifiers to data representing the same entities. Even master data management (MDM) applications are not immune to this issue, particularly because of the inherent semantics associated with the