Data science, as Deepinder Dhingra recently blogged, “is essentially an intersection of math and technology skills.” Individuals with these skills have been labeled data scientists and organizations are competing to hire them. “But what organizations need,” Dhingra explained, “are individuals who, in addition to math and technology, can bring in
Author
Data-driven journalism has driven some of my recent posts. I blogged about turning anecdote into data and how being data-driven means being question-driven. The latter noted the similarity between interviewing people and interviewing data. In this post I want to examine interviewing people about data, especially the data used by people to drive
At the Journalism Interactive 2014 conference, Derek Willis spoke about interviewing data, his advice for becoming a data-driven journalist. “The bulk of the skills involved in interviewing people and interviewing data are actually pretty similar,” Willis explained. “We want to get to know it a little bit. We want to figure
In physics, antimatter has the same mass, but opposite charge, of matter. Collisions between matter and antimatter lead to the annihilation of both, the end result of which is a release of energy available to do work. In this blog series, I will use antimatter as a metaphor for a factor
Early in the terrific book What Technology Wants by Kevin Kelly, he discusses the concept of Paleolithic Rhythm, which describes the short bursts of intense effort followed by long periods of rest employed by the hunter-gatherer tribes of early humans during the Paleolithic Era. Paleolithic Rhythm is also an apt analogy for how many
The planning and execution of enterprise information initiatives is definitely not easy. Building the business case involves identifying, documenting, verifying and refining a set of requirements that are representative of the various perspectives of the business and technical stakeholders all throughout the organization. Many such initiatives begin with the very
My previous post made the point that it’s not a matter of whether it is good for you to use samples, but how good the sample you are using is. The comments on that post raised two different, and valid, perspectives about sampling. These viewpoints reflected two different use cases for data,
In my previous post, I discussed sampling error (i.e., when a randomly chosen sample doesn’t reflect the underlying population, aka margin of error) and sampling bias (i.e., when the sample isn’t randomly chosen at all), both of which big data advocates often claim can, and should, be overcome by using all the data. In this
In his recent Financial Times article, Tim Harford explained the big data that interests many companies is what we might call found data – the digital exhaust from our web searches, our status updates on social networks, our credit card purchases and our mobile devices pinging the nearest cellular or WiFi network.
As an unabashed lover of data, I am thrilled to be living and working in our increasingly data-constructed world. One new type of data analysis eliciting strong emotional reactions these days is the sentiment analysis of the directly digitized feedback from customers provided via their online reviews, emails, voicemails, text messages and social networking