Author

Mike Gilliland
RSS
Product Marketing Manager

Michael Gilliland is a longtime business forecasting practitioner and formerly a Product Marketing Manager for SAS Forecasting. He is on the Board of Directors of the International Institute of Forecasters, and is Associate Editor of their practitioner journal Foresight: The International Journal of Applied Forecasting. Mike is author of The Business Forecasting Deal (Wiley, 2010) and former editor of the free e-book Forecasting with SAS: Special Collection (SAS Press, 2020). He is principal editor of Business Forecasting: Practical Problems and Solutions (Wiley, 2015) and Business Forecasting: The Emerging Role of Artificial Intelligence and Machine Learning (Wiley, 2021). In 2017 Mike received the Institute of Business Forecasting's Lifetime Achievement Award. In 2021 his paper "FVA: A Reality Check on Forecasting Practices" was inducted into the Foresight Hall of Fame. Mike initiated The Business Forecasting Deal blog in 2009 to help expose the seamy underbelly of forecasting practice, and to provide practical solutions to its most vexing problems.

Mike Gilliland 0
The "avoidability" of forecast error (Part 4)

The Empirical Evidence Steve Morlidge presents results from two test datasets (the first with high levels of manual intervention, the second with intermittent demand patterns), intended to challenge the robustness of the avoidability principle. The first dataset contained one year of weekly forecasts for 124 product SKUs at a fast-moving consumer

Mike Gilliland 0
The "avoidability" of forecast error (Part 3)

Suppose we have a perfect forecasting algorithm. This means that we know the "rule" guiding the behavior we are forecasting (i.e., we know the signal), and we have properly expressed the rule in our forecasting algorithm. As long as the rule governing the behavior doesn't change in the future, then any

Mike Gilliland 0
The "avoidability" of forecast error (Part 2)

While I've long advocated the use of Coefficient of Variation (CV) as a quick and dirty indicator of the forecastability of a time-series, its deficiencies are well recognized. It is true that any series with extremely low CV can be forecast quite accurately (using a moving average or simple exponential smoothing

1 71 72 73 74 75 126