
지난 포스팅(컴퓨터가 사물을 보는 방법 1편, 2편)에서는 CNN(Convolution Neural Network)에서 사용될 수 있는 다양한 기법들과 함께 CNN의 학습이 어떤 방식으로 이루어지는지 알아보았습니다. CNN은 데이터(특히 이미지 데이터)에 합성곱, 풀링, 패딩 등의 작업을 거쳐 특징을 추출한 후 회귀 또는 분류를 수행하는 딥러닝 모델입니다. 오늘 포스팅에서는 지금까지 배운 기법들을 SAS Viya에서 구현하는 실습을
지난 포스팅(컴퓨터가 사물을 보는 방법 1편, 2편)에서는 CNN(Convolution Neural Network)에서 사용될 수 있는 다양한 기법들과 함께 CNN의 학습이 어떤 방식으로 이루어지는지 알아보았습니다. CNN은 데이터(특히 이미지 데이터)에 합성곱, 풀링, 패딩 등의 작업을 거쳐 특징을 추출한 후 회귀 또는 분류를 수행하는 딥러닝 모델입니다. 오늘 포스팅에서는 지금까지 배운 기법들을 SAS Viya에서 구현하는 실습을
지난 포스팅에서 컴퓨터 비전의 과거와 CNN(Convolution Neural Network)의 구성 요소, 퍼셉트론, 합성곱층에 대해 알아보았습니다. 합성곱층과 함께 풀링, 활성화 함수, 드랍아웃 등 다양한 요소를 활용한다면 모델의 성능을 더욱 향상시킬 수 있습니다. 오늘 포스팅에서는 CNN에서 사용될 수 있는 다양한 기법들과 함께 CNN의 학습이 어떤 방식으로 이루어지는지 살펴보도록 하겠습니다. 1. CNN의 구성요소 <그림
컴퓨터가 인간보다 잘 하는 몇 가지 분야가 있는데, 그 중 하나가 바로 이미지 인식입니다. 2012년 알렉스넷이 개발된 이후 컴퓨터 비전 분야는 급속도로 성장하여 우리 일상에 자연스럽게 스며들었습니다. 오늘 포스팅에서는 컴퓨터가 이미지를 어떻게 인식할 수 있는지 이론을 중심으로 살펴보도록 하겠습니다. 1. 컴퓨터 비전의 과거 우리가 모니터를 통해 바라보는 이미지의 구조부터 알아보겠습니다.