Author

Jong-Phil Park
RSS

Principal Systems Engineer, Business Solution

Analytics
Jong-Phil Park 0
금융권 실시간 머신러닝 서비스, 어떻게 시작할까?

금융권 실시간 머신러닝 서비스 시리즈 ① 초개인화 마케팅과 차별화된 고객만족 서비스를 위해 이제 대세로 자리잡은 실시간 서비스! 금융권 실시간 머신러닝 서비스의 도입을 위한 모든 것을 알려드립니다. 여러분은 실시간 서비스하면 어떤 이미지가 생각 나십니까? 위 화면은 2018년 SAS Forum에서 실시간 분석에 대한 데모를 진행했던 영상의 일부입니다. 운전자의 자세를 캡처해서 실시간으로 운전자의

Analytics
Jong-Phil Park 0
고객 성향 분석(Customer Propensity Analysis) : DIY & DIFM 접근 방법

고객의 데이터를 분석하여 고객 성향 및 선호도를 이해하고, 이를 활용해 마케팅 업무를 효율화하고자 하는 노력은 90년대 데이터베이스 마케팅, 2000년대 분석 CRM, 최근의 퍼포먼스, 그로스 마케팅까지 계속적으로 진화하고 있습니다. 멀티채널에서 쏟아지는 고객의 온/오프라인 데이터를 통합, 분석하여 마이크로 타겟팅 마케팅은 기본적으로 고객 성향 예측 모형(Customer Propensity Model)을 기반으로 수행되고 있습니다. 디지털채널을 중심으로

Analytics
Jong-Phil Park 0
SAS와 Microsoft의 초자동화(Hyper Automation)

Hyper Automation, 초(超) 자동화 제조, 여신, 물류 등의 산업군 및 마케팅, 영업 등의 직군에 종사하신다면 자동화(Automation)라는 용어는 그리 낮 설지 않은 용어일 것 입니다. 자동화는 인간의 노동 효율을 극대화하기 위해 인간의 개입을 최소화 하고 기계 또는 컴퓨터의 능력을 활용하는 방향으로 진화해 왔습니다. 예를 들어 마케팅 영역에서의 자동화의 경우, 마케팅 전략을

Analytics | Data Management
Jong-Phil Park 0
[분석기술의 실용화 전략 #2] Operationalizing Analytics와 세가지 사례

지난 글에서는 분석 모델을 배포하기까지 많은 시간이 소요되는 이유, 이를 극복하기 위한 방법으로서 운영계에 적용하는 ModelOps의 개념과 효과를 소개해드렸습니다. 하지만 통상적으로 기업의 의사결정이 분석의 결과만으로 이뤄지지는 않습니다. 분석 인사이트를 기반으로 하되 기업에서 설정한 비즈니스 룰을 확인해야 하며, 기업 안팎의 상황에 대한 검토도 필요합니다. 금융권을 예로 들면, 고객의 신용대출 요청에 따른

Analytics | Data Management
Jong-Phil Park 0
[분석기술의 실용화 전략 #1] 데이터 중심의 의사결정을 위한 마지막 관문, 모델 배포와 최적화

기업에서는 하루에도 여러 차례 비즈니스에 중요한 의사결정을 내리고 있습니다. 최선의 선택을 하기 위해 많은 기업이 강력한 분석 모델을 개발하여 의사결정 프로세스에 분석 결과를 통합하고 있습니다. 하지만 의사결정에 결정적인 역할을 하는 대부분의 분석 모델은 빛을 보지 못합니다. 데이터 중심의 의사결정을 위한 실용화의 마지막 관문을 넘지 못하기 때문입니다. 본 글에서 데이터 중심의