Determining the life cycle of event stream data requires us to first understand our business and how fast it changes. If event data is analyzed, it makes sense that the results of that analysis would feed another process. For example, a customer relationship management (CRM) system or campaign management system like
Author
Event stream processing – Tips 2 and 3: Understand the life cycle of the data, collection and consumption
Event stream processing – Tip 1: Don’t be overwhelmed
I believe most people become overwhelmed when considering the data that can be created during event processing. Number one, it is A LOT of data – and number two, the data needs real-time analysis. For the past few years, most of us have been analyzing data after we collected it,
Data management for analysis – Feeding the analytical monster more than once
(Otherwise known as Truncate – Load – Analyze – Repeat!) After you’ve prepared data for analysis and then analyzed it, how do you complete this process again? And again? And again? Most analytical applications are created to truncate the prior data, load new data for analysis, analyze it and repeat