In my previous post, I discussed sampling error (i.e., when a randomly chosen sample doesn’t reflect the underlying population, aka margin of error) and sampling bias (i.e., when the sample isn’t randomly chosen at all), both of which big data advocates often claim can, and should, be overcome by using all the data. In this
Author
Survey says sampling still sensible
What we find in found data
In his recent Financial Times article, Tim Harford explained the big data that interests many companies is what we might call found data – the digital exhaust from our web searches, our status updates on social networks, our credit card purchases and our mobile devices pinging the nearest cellular or WiFi network.
The dark side of the mood
As an unabashed lover of data, I am thrilled to be living and working in our increasingly data-constructed world. One new type of data analysis eliciting strong emotional reactions these days is the sentiment analysis of the directly digitized feedback from customers provided via their online reviews, emails, voicemails, text messages and social networking