AI/ML 모델 개발 상의 어려움과 이를 해결하기 위한 접근법으로서 ModelOps의 필요성이 대두되고 있습니다. (참조 : AI/ML 기반 모델 개발, 과제와 해결방안은?) 이번 글에서는 ModelOps가 구체적으로 어떤 제품인지, 어떤 장점을 제공하며 구현방법은 어떠한지 등에 대해 설명드리도록 하겠습니다. 이에 앞서 ModelOps의 구현에 중요한 역할을 하는 ‘모델 거버넌스’에 대해 잠깐 짚어보도록 하겠습니다. 모델
AI/ML 모델 개발 상의 어려움과 이를 해결하기 위한 접근법으로서 ModelOps의 필요성이 대두되고 있습니다. (참조 : AI/ML 기반 모델 개발, 과제와 해결방안은?) 이번 글에서는 ModelOps가 구체적으로 어떤 제품인지, 어떤 장점을 제공하며 구현방법은 어떠한지 등에 대해 설명드리도록 하겠습니다. 이에 앞서 ModelOps의 구현에 중요한 역할을 하는 ‘모델 거버넌스’에 대해 잠깐 짚어보도록 하겠습니다. 모델
기업내에 AI/ML를 적용하기 위해, 업무 관점에서 시민 데이터 사이언티스트(Citizen Data Scientist, 이하 CDS)와 그 필요 역량인 데이터 문해력(Data Literacy)의 중요성이 높아지고 있습니다.(참고 : 데이터 문해력과 시민 데이터 사이언티스트의 필요 역량) 이와 연결하여, 데이터를 기반으로 신속하게 개발한 예측 모델을 업무 시스템에 통합 또는 활용하기 위해 IT 관점에서 해결해야할 과제와 접근 방안에 대해
데이터 문해력과 SAS Viya 플랫폼 ‘데이터 문해력과 시민 데이터 사이언티스트(이하 CDS)의 필요 역량’이라는 지난번 블로그 포스팅에 이어, 이번에는 데이터 문해력을 기반으로 CDS를 지원하는 기반 플랫폼 ‘SAS Viya’(쌔스 바이야)의 주요 특징들을 살펴보겠습니다. SAS Viya는 인 메모리, MPP 환경과 Cloud Native 등 최신 기술을 기반으로, 분석의 생애 주기인 데이터 접근, 전 처리,